• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.035 seconds

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

Face Disguise Detection System Based on Template Matching and Nose Detection (탬플릿 매칭과 코검출 기반 얼굴 위장 탐지 시스템)

  • Yang, Jae-Jun;Cho, Seong-Won;Lee, Kee-Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.100-107
    • /
    • 2012
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous methods for face disguise detection are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new disguise detection method using the template matching and Adaboost algorithm. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, and uses template matching technique in oreder to increase the detection accuracy in the second stage. The template matching plays a role in determining whether or not the person of the captured image has sunglasses on. Adaboost algorithm is used to determine whether or not the person of the captured image wears a mask. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of disguise faces.

Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection (효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조)

  • Park, Sejin;Han, Jeong Hoon;Moon, Young Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1437-1444
    • /
    • 2020
  • With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method.

Extraction and classification of characteristic information of malicious code for an intelligent detection model (지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류)

  • Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2022
  • In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.

Analysis of Trends in Detection Environments and Proposal of Detection Frame work for Malicious Cryptojacking in Cloud Environments (악성 크립토재킹 대응을 위한 탐지 환경별 동향 분석 및 클라우드 환경에서의 탐지 프레임워크 제안)

  • Jiwon Yoo;Seoyeon Kang;Sumi Lee;Seongmin Kim
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.19-29
    • /
    • 2024
  • A crypto-jacking attack is an attack that infringes on the availability of users by stealing computing resources required for cryptocurrency mining. The target of the attack is gradually diversifying from general desktop or server environments to cloud environments. Therefore, it is essential to apply a crypto-minor detection technique suitable for various computing environments. However, since the existing detection methodologies have only been detected in a specific environment, comparative analysis has not been properly performed on the methodologies that can be applied to each environment. Therefore, in this study, classification criteria for conventional crypto-minor detection techniques are established, and a complex and integrated detection framework applicable to the cloud environment is presented through in-depth comparative analysis of existing crypto-minor detection techniques based on different experimental environments and datasets.

A New Watermarking Algorithm Using the Edge and PN Code (에지와 대역확산기술을 이용한 디지털 워터마킹 기법)

  • Song Sang-Ju;Lee Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.13-18
    • /
    • 2004
  • In this paper, we proposed a new digital watermarking technique. It uses frequency domain of discrete wavelet transform(DWT). watermarking technique is one of the most important tools for DRM(Digital Right Management) We proposed a new algorithm watermark insertion and detection. This technique cleats the watermark sequence using the edge image, spread spectrum technique and DWT. We tested the technique with various attacks. and found that it satisfies the watermarking evaluation criteria. Cox similarity measurement value is more than 6 on the Lena image and PSNR is more than 40dB on JPEG, Collusion. Clopping and Scatting. By the result, we proved that the new technique satisfies the requirement of Digital contents distribution, which are undeletablility tenacity, statistical undetectablility.

  • PDF

Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise (다양한 화소기반 변화탐지 결과와 등록오차를 이용한 객체기반 변화탐지)

  • Jung, Se Jung;Kim, Tae Heon;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • Change detection, one of the main applications of multi-temporal satellite images, is an indicator that directly reflects changes in human activity. Change detection can be divided into pixel-based change detection and object-based change detection. Although pixel-based change detection is traditional method which is mostly used because of its simple algorithms and relatively easy quantitative analysis, applying this method in VHR (Very High Resolution) images cause misdetection or noise. Because of this, pixel-based change detection is less utilized in VHR images. In addition, the sensor of acquisition or geographical characteristics bring registration noise even if co-registration is conducted. Registration noise is a barrier that reduces accuracy when extracting spatial information for utilizing VHR images. In this study object-based change detection of VHR images was performed considering registration noise. In this case, object-based change detection results were derived considering various pixel-based change detection methods, and the major voting technique was applied in the process with segmentation image. The final object-based change detection result applied by the proposed method was compared its performance with other results through reference data.