• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.037 seconds

A frequency measurement based on modified zero-crossing method for anti-islanding detection of distributed generation (분산전원의 Anti-islanding용 수정된 zero-crossing 방식 주파수 검출기법)

  • Bae, Byung-Yeol;Baek, Seung-Taek;Lee, Jin-Hee;Suh, In-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.634-636
    • /
    • 2008
  • This paper proposes a frequency detection method based on an advanced zero-crossing technique. Zero-crossing method for detecting frequency is one of the most widely used methods today. Although it is simple to apply, it requires extra hardware in implementation due to its limitations in accuracy. The proposed method models the error generated during zero crossing linearization and compensated for it in real time which makes it simple and accurate. The validity of the method and its applicability in anti-islanding detection of distributed generators was confirmed through simulation.

  • PDF

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

State of the Art Review of Shading Effects on PV Module Efficiencies and Their Detection Algorithm Focusing on Maximum Power Point

  • Lee, Duk Hwan;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.21-28
    • /
    • 2014
  • This paper provides the up to date review of the shading effects on PV module performance and the associated detection algorithm related to the maximum power point tracking. It includes the brief explanations of the MMP variations due to the shading occurrence on the PV modules. Review of experimental and simulation studies highlighting the significant impacts of shading on PV efficiencies were presented. The literature indicates that even the partial shading of a single cell can greatly drop the entire module voltage and power efficiency. The MMP tracking approaches were also reviewed in this study. Both conventional and advanced soft computing methods such as ANN, FLC and EA were described for the proper tracking of MMP under shaded conditions. This paper would be the basic source and the comprehensive information associated with the shading effects and relevant MPP tracking technique.

A New Face Detection Method by Hierarchical Color Histogram Analysis

  • Kwon, Ji-Woong;Park, Myoung-Soo;Kim, Mun-Hyuk;Park, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.3-138
    • /
    • 2001
  • Because face has non-rigid structure and is influenced by illumination, we need robust face detection algorithm with the variations of external environments (orientation of lighting and face, complex background, etc.). In this paper we develop a new face detection algorithm to achieve robustness. First we transform RGB color into other color space, in which we can reduce lighting effect much. Second, hierarchical image segmentation technique is used for dividing a image into homogeneous regions. This process uses not only color information, but also spatial information. One of them is used in segmentation by histogram analysis, the other is used in segmentation by grouping. And we can select face region among the homogeneous regions by using facial features.

  • PDF

Motion Boundary Detection and Motion Vector Estimation by spatio-temporal Gradient Method using a New Spatial Gradient (새로운 공간경사를 사용한 시공간 경사법에 의한 운동경계 검출 및 이동벡터 추정)

  • 김이한;김성대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.59-68
    • /
    • 1993
  • The motion vector estimation and motion boundary detection have been briskly studied since they are an important clue for analysis of object structure and 3-d motion. The purpose of this researches is more exact estimation, but there are two main causes to make inaccurate. The one is the erroneous measurement of gradients in brightness values and the other is the blurring of motion boundries which is caused by the smoothness constraint. In this paper, we analyze the gradient measurement error of conventional methods and propose new technique based on it. When the proposed method is applied to the motion boundary detection in Schunck and motion vector estimation in Horn & Schunck, it is shown to have much better performance than conventional method is some artificial and real image sequences.

  • PDF

Voice Activity Detection Based on Signal Energy and Entropy-difference in Noisy Environments (엔트로피 차와 신호의 에너지에 기반한 잡음환경에서의 음성검출)

  • Ha, Dong-Gyung;Cho, Seok-Je;Jin, Gang-Gyoo;Shin, Ok-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.768-774
    • /
    • 2008
  • In many areas of speech signal processing such as automatic speech recognition and packet based voice communication technique, VAD (voice activity detection) plays an important role in the performance of the overall system. In this paper, we present a new feature parameter for VAD which is the product of energy of the signal and the difference of two types of entropies. For this end, we first define a Mel filter-bank based entropy and calculate its difference from the conventional entropy in frequency domain. The difference is then multiplied by the spectral energy of the signal to yield the final feature parameter which we call PEED (product of energy and entropy difference). Through experiments. we could verify that the proposed VAD parameter is more efficient than the conventional spectral entropy based parameter in various SNRs and noisy environments.

Fault detection of shadow mask by use of image data processing

  • Sakata, Masato;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.176-180
    • /
    • 1992
  • At the KACC'91 conference, we proposed a method of automatic detection of shape of the faulty holes of a shadow mask which is used in a cathode-ray tube of a color television. In this method, the image data are taken from two areas of the mask with CCD camera. Comparing the shape of holes in these two areas by use of a signal processing technique, we can find any fault in the shape of holes. This paper describes the effect of smoothing filters of effectively finding the faulty holes from the difference image data. A computer simulation and actual experiment with a shadow mask have shown that this method of fault detection is very effective for practical use.

  • PDF

A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denoising, PCA and SPRT

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.483-497
    • /
    • 2001
  • In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system The PCA is used to reduce the dimension of an input space without losing a significant amount of information. The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors.

  • PDF

Position Detection of a Scattering 3D Object by Use of the Axially Distributed Image Sensing Technique

  • Cho, Myungjin;Shin, Donghak;Lee, Joon-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.414-418
    • /
    • 2014
  • In this paper, we present a method to detect the position of a 3D object in scattering media by using the axially distributed sensing (ADS) method. Due to the scattering noise of the elemental images recorded by the ADS method, we apply a statistical image processing algorithm where the scattering elemental images are converted into scatter-reduced ones. With the scatter-reduced elemental images, we reconstruct the 3D images using the digital reconstruction algorithm based on ray back-projection. The reconstructed images are used for the position detection of a 3D object in the scattering medium. We perform the preliminary experiments and present experimental results.

Structural Damage Detection Using Swarm Intelligence and Model Updating Technique (군집지능과 모델개선기법을 이용한 구조물의 결함탐지)

  • Choi, Jong-Hun;Koh, Bong-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.