This paper proposes a nonlinear template matching measure, called counting measure, as a signal detection measure that is defined as the number of on pixels in the spot area. It is applied to classify probes for an on-off type DNA chip, where each probe spot is classified as hybridized or not. The counting measure also incorporates the maximum response search method, where the expected signal is obtained by taking the maximum among the measured responses of the various positions and sizes of the spot template. The counting measure was compared to existing signal detection measures such as the normalized correlation and the median for 2390 patient samples tested on the human papiliomavirus (HPV) DNA chip. The counting measure performed the best regardless of whether or not the maximum response search method was used. The experimental results showed that the counting measure combined with the positional search was the most preferable.
In this paper, we proposed ACM (Anti-filler confidence measure) to compensate shortcoming of conventional RLJ-CM (RLJ-CM) and NCM (normalized CM), and integrated proposed ACM and conventional NCM using HCM (hybrid CM). Proposed ACM analyzes that FA (false acceptance) happens by the construction method of anti-phone model, and presumed phoneme sequence in actuality using phoneme recognizer to compensate this. We defined this as anti-phone model and used in confidence measure calculation. Analyzing feature of two confidences measure, conventional NCM shows good performance to FR (false rejection) and proposed ACM shows good performance in FA. This shows that feature of each other are complementary. Use these feature, we integrated two confidence measures using weighting vector α And defined this as HCM. In MDR (missed detection rate) 10% neighborhood, HCM is 0.219 FA/KW/HR (false alarm/keyword/hour). This is that Performance improves 22% than used conventional NCM individually.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.6B
/
pp.993-1001
/
2000
This research features a method that quantitatively evaluates the performance of edge detection algorithms. Contrary to conventional methods that evaluate the performance of edge detection as a function of the amount of noise added to he input image, the proposed method is capable of assessing the performance of edge detection algorithms based on chosen parameters that influence the performance of edge detection. We have proposed a quantitative measure, called average performance index, that compares the average performance of different edge detection algorithms. We have applied the method to the commonly used edge detectors, Sobel, LOG(Laplacian of Gaussian), and Canny edge detectors for noisy images that contain straight line edges and curved line edges. Two kinds of noises i.e, Gaussian and impulse noises, are used. Experimental results show that our method of quantitatively evaluating the performance of edge detection algorithms can facilitate the selection of the optimal dge detection algorithm for a given task.
Journal of the Korea Institute of Information Security & Cryptology
/
v.18
no.2
/
pp.97-105
/
2008
The various mutations of the malicious codes are fast generated on the network. Also the behaviors of them become intelligent and the damage becomes larger step by step. In this paper, we suggest the method to select the useful measures for the detection of the codes. The method has the advantage of shortening the detection time by using header data without payloads and uses connection data that are composed of TCP/IP packets, and much information of each connection makes use of the measures. A naive estimator is applied to the probability distribution that are calculated by the histogram estimator to select the specific measures among 80 measures for the useful detection. The useful measures are then selected by using relative entropy. This method solves the problem that is to misclassify the measure values. We present the usefulness of the proposed method through the result of the detection experiment using the detection patterns based on the selected measures.
In this paper we present a simple, efficient method for detecting the blurry photographs. Recently many digital cameras are equipped with various auto-focusing functions to help users take well-focused pictures as easily as possible. In addition, motion compensation devices are able to compensate motion causing blurriness in the images. However, digital pictures can be degraded by limited contrast, inappropriate exposure, imperfection of auto-focusing or motion compensating devices, unskillfulness of the photographers, and so on. In order to decide whether to process the images or not, or whether to delete them or not, reliable measure of image degradation to detect blurry images from sharp ones is needed. This paper presents a blurriness/sharpness measure, and demonstrates its feasibility by using extensive experiments. This method is fast, easy to implement and accurate. Regardless of the detection accuracy, the proposed measure in this paper is not demanding in computation time. Needless to say, this measure can be used for various imaging applications including auto-focusing and astigmatism correction.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.9
no.4
/
pp.75-79
/
2009
In this paper the method was proposed which uses ${\lambda}$-fuzzy measure to detect the edge of the features of the face region. In the conventional method the features was founded using valley, brightness and edge. This method had its drawbacks that it is so sensitive to the external noises and environments. This paper proposed ${\lambda}$-fuzzy measure to cope with this drawbacks. By considering each weight of the pixels the integral evaluation was considered using the center of area method. Thus the continuity of the edge was kept by way of the neighborhood information and the reduction of time complexity wad resulted in.
Journal of the Korea Institute of Information Security & Cryptology
/
v.28
no.6
/
pp.1499-1508
/
2018
Although fast-growing e-commerce markets gave a lot of companies opportunities to expand their customer bases, it is also the case that there are growing number of cases in which the so-called 'black consumers' cause much damage on many companies. In this study, we will implement and optimize a machine learning model that detects black consumers using customer data from e-commerce store. Using filter method for feature selection and 4 different algorithms for classification, we could get the best-performing machine learning model that detects black consumer with F-measure 0.667 and could also yield improvements in performance which are 11.44% in F-measure, 10.51% in AURC, and 22.87% in TPR.
Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.11
/
pp.2737-2753
/
2013
In this study, we propose a novel salient object detection strategy based on regional contrast and relative spatial compactness. Our algorithm consists of four basic steps. First, we learn color names offline using the probabilistic latent semantic analysis (PLSA) model to find the mapping between basic color names and pixel values. The color names can be used for image segmentation and region description. Second, image pixels are assigned to special color names according to their values, forming different color clusters. The saliency measure for every cluster is evaluated by its spatial compactness relative to other clusters rather than by the intra variance of the cluster alone. Third, every cluster is divided into local regions that are described with color name descriptors. The regional contrast is evaluated by computing the color distance between different regions in the entire image. Last, the final saliency map is constructed by incorporating the color cluster's spatial compactness measure and the corresponding regional contrast. Experiments show that our algorithm outperforms several existing salient object detection methods with higher precision and better recall rates when evaluated using public datasets.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.37
no.4
/
pp.46-55
/
2000
This paper presents an algorithm for 3D building reconstruction from a pair of stereo aerial images using the 3D building model and the linear segments of building. Direct extraction of linear segments from original building images using parametric building model is attempted instead of employing the conventional procedures such as edge detection, linear approximation and line linking A segment measure function is simultaneously applied to each line segment extracted in order to improve the accuracy of building detection comparing to individual linear segment detection. The algorithm has been applied to pairs of stereo aerial images and the result showed accurate detection and reconstruction of buildings.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.