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Abstract 
 

In this study, we propose a novel salient object detection strategy based on regional contrast 

and relative spatial compactness. Our algorithm consists of four basic steps. First, we learn 

color names offline using the probabilistic latent semantic analysis (PLSA) model to find the 

mapping between basic color names and pixel values. The color names can be used for image 

segmentation and region description. Second, image pixels are assigned to special color names 

according to their values, forming different color clusters. The saliency measure for every 

cluster is evaluated by its spatial compactness relative to other clusters rather than by the intra 

variance of the cluster alone. Third, every cluster is divided into local regions that are 

described with color name descriptors. The regional contrast is evaluated by computing the 

color distance between different regions in the entire image. Last, the final saliency map is 

constructed by incorporating the color cluster’s spatial compactness measure and the 

corresponding regional contrast. Experiments show that our algorithm outperforms several 

existing salient object detection methods with higher precision and better recall rates when 

evaluated using public datasets. 
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1. Introduction 

Researchers are attempting to find methods to enable algorithms to move towards the ability, 

natural to human beings, to focus on important parts of an image with seemingly little effort. 

This is an important and fundamental research problem in neuroscience and psychology. 

Recently, it has attracted more attention in computer vision because of its application in 

adaptive image compression [1,2], image segmentation [3,4], object detection and recognition 

[5,6], and image editing techniques [7,8,9].  

Visual saliency refers to the physical, bottom-up distinctness of image details. It is a relative 

property that depends on the degree to which a detail is visually distinct from its background 

[10]. This distinctness may vary in image attributes such as color, orientation, intensity, or 

edges. The methods used to evaluate distinctness can depend on local or global contrast. 

Global contrast methods are believed to be preferable to local ones in producing more salient 

values for uniform inside objects; furthermore, the global methods are more efficient when 

there is a cluttered background [7,11]. Based on this idea, Cheng et al. [7] proposed a 

region-based contrast method (RC), which achieved good results on a public dataset.  

In this study, we also concentrate on regional contrast salient object detection; however, the 

primary differences are in the approaches employed for image segmentation and region 

representation. We introduce the color attribute color names, which contains 11 basic colors 

and every color corresponding to a range of pixel values [12]. We train the color names 

distribution on pixel values using probabilistic latent semantic analysis (PLSA), a well-known 

latent aspect model in the text analysis community. The distribution can be used as prior 

knowledge to assign pixels to special color names and form different color clusters. Each 

cluster corresponds to a color name in an image. We explore the relative spatial compactness 

of the clusters to obtain their initial conspicuity values. In this application, relative means that 

the spatial compactness of a cluster is measured by its distance relative to other clusters rather 

than the intra spatial variance of the cluster as used by [13]. Then, each cluster is divided into 

regions, which are represented by color name descriptor (CN). The saliency value of a region 

depends on its color contrast with respect to other regions in the image and the initial 

conspicuity value of the cluster to which it belongs. Fig. 1 shows the flowchart of the proposed 

framework for salient object detection.  

Contributions. The contributions of our study include: 1) Color names are introduced into 

the method of salient object detection for image segmentation and region representation. 

Comparisons show that the color name descriptor is more distinct and compact than the sparse 

histogram in RGB color space, commonly used in RC [7]. 2) Our method uses the relative 

spread of the color cluster as the saliency factor. That is, the less the color cluster spreads, the 

more salient it is.   

We have compared the application of our method on publicly available benchmark datasets 

with some state-of-the-art saliency methods [7,14,15,16,17,18] and with manually produced 

ground truth annotations. The experiments show improvements over previous methods both in 

precision and recall rates. 

2. Related Work 

In the past decade, many different algorithms have been proposed to compute visual saliency 

from digital imagery. According to the theme of our study, we briefly introduce the local and 
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global contrast methods in the subfield of pre-attentive bottom-up saliency detection. 

Local contrast methods consider local structures of image pixels or patches in small 

neighborhoods. Pixels or patches with high contrast will be assigned a high saliency. Itti et al. 

[19] used center-surround difference as the filter response during local measurements. Liu et al. 

[20] proposed a set of novel features, including multiscale contrast, center-surround 

histograms, and color spatial distribution, to describe a salient object. In [21], the saliency 

measure is formulated using a statistical framework and local feature contrast in illumination, 

color, and motion information. The measure is based on applying a sliding window to the 

image. In each window, the contrast is computed between the distribution of certain features in 

an inner window and the distribution in the collar of the window. These local contrast methods 

work well for images with homogenous backgrounds and produce well-defined salient object 

boundaries, but do not hold for images with cluttered backgrounds and uniform inside objects 

[11]. 

Global contrast methods compute saliency in the entire image. Units (which can be pixels, 

super-pixels or regions) with high contrast or low occurrence frequency are more salient. 

Achanta et al. [15] proposed a frequency-tuned method that evaluates saliency based on 

individual pixels. This pixel-level saliency analysis inevitably loses information from the 

original image, therefore, finding salient objects with it is difficult. Feng et al. [11] detected 

salient objects by directly measuring the saliency of a window in the original image. Cheng et 

al. [7] proposed a region contrast saliency extraction algorithm, which computes color contrast 

and spatial relations at the region level.  

There are some previous studies that combined local methods with global ones. Goferman 

et al. [14] considered local and global clues simultaneously, taking visual organization rules 

and high-level features into account. To overcome the drawback of [15], i.e., that the saliency 

maps highlight the background when the salient regions are large, Achanta et al. introduced 

local scale information and then made assumptions about the scale of the object of detection 

based on its position in the image [18]. 

 

 
Fig. 1. Proposed framework for salient object detection in an image. 
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3. The Proposed Method 

3.1 Learning Color Names 

Color names are linguistic labels that humans assign to colors in their world [22]. In a 

linguistic study, Berlin and Kay [23] concluded that the English language contains eleven 

basic color terms: black, blue, brown, gray, green, orange, pink, purple, red, white and yellow. 

Color names learning finds the relation between color names and the corresponding pixel 

values. To learn color names for saliency detection, we have chosen 100 images for each color 

name from the MSRA public saliency dataset [20] as training data, in which every image is 

labeled with a corresponding color name. A sample of the training images is shown in Fig. 2. 

 
Fig. 2. A sample of training images for color names. 

 

We use probabilistic latent semantic analysis (PLSA) [24], which is a well-known latent 

aspect model in the text analysis community, to learn the color names. PLSA uses a generative 

model, to find the latent topics which best explain the observed data. Given a document set 

  {       }, each document described by a vocabulary   {       }, the words are 

generated by latent topics   {       }. PLSA assumes that every pair (   ) is generated 

as follows: 
 

 (   )   ( ) ( | )                                                     (1) 

 

 ( | )  ∑  ( | )    ( | )                                             (2) 

 

In our work, we treat the image as a document. Pixels in the image are represented by 

discretizing their values in        space into a histogram by assigning each value using cubic 

interpolation to a regular          bin. The bin of the histogram is synonymous with the 

word in PLSA [12]. As shown in Fig. 3, the color histogram corresponds to the component of 

word-document distribution  ( | ) in the PLSA model. In addition, every image naturally 

includes some colors, such as red, green, yellow, etc., just like every document includes a 

number of topics in PLSA. In short,   represents an image,   represents the pixel values and 

  denotes the color names appearing in the image. Distributions  ( | ) and  ( | ) can be 

evaluated using the expectation-maximization algorithm. The former represents the 

conditional probabilities of various color names given an image, which may vary from image 

to image, the latter represents the word-topic distribution and is shared among all images. The 

training stage will find the relation between words and topics,  ( | ). We will show how it is 

used for image segmentation and region description in the next stage. 
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Fig. 3. Overview of PLSA used in color names training. 

 

Compared to standard PLSA, in this study, a prior distribution of color names in images, 

 ( | ), is defined according to image labels. The topic corresponding to the label of the image 

has a higher frequency than the other topics. The prior distribution can be achieved by a 

parameter vector,    , where    is the label of the image. The length of the vector     equals 

the number of topics. For     ,    ( )     , otherwise    ( )   . By varying  , the 

influence of image label    on distribution  ( | ) can be controlled. In our experiment, we 

find     to be optimal. 

3.2 Image Segmentation and Region Description 

After we obtain the topic distribution over the words,  ( | ), Bayes theorem is used to 

evaluate  ( | ), which then represents a pixel’s probabilities of different color names. 
 

 ( | )   ( ) ( | )                                                 (3) 

 

where the prior probability of the color names,  ( ), is obtained from the training images. 

The calculation of  ( | ) is obtained offline, i.e., it is like a lookup table. For pixel   in an 

input image, probabilities of different color names can be represented as 

{ (   | ( ))  (   | ( ))    (    | ( ))}, according to  ( | ), where  ( ) is the 

pixel value in        space.   is assigned to the color name that has the maximum 

probability for that location. In this formulation,  ( | ) in Equation (3) is computed based 

on the individual pixel and will result in too many isolated points. Therefore, we employ a 

median filter after the pixel assignment. As shown in Fig. 4, a spread of color names in 

spatial space (color clusters) are obtained after pixel assignment and median filtering. Then, 

each color cluster is segmented into regions. For example, in the red cluster, pixels that 

belong to red are set to 1, otherwise the pixel is set to 0. Then the cluster is segmented into 

regions in a binary image. The other clusters in the image are treated in the same way. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 11, Nov. 2013                              2742 

Copyright ⓒ 2013 KSII 

 
Fig. 4. Overview of image segmentation. (a) Original image, (b) color clusters after pixel assignment 

and median filtering, (c) regions of red cluster and (d) regions of green cluster. 

 

If a region is identified as salient, it has at least one feature different from the surroundings 

[25]. Ideally, the feature descriptor is discriminative, compact and invariant to illumination. 

In [7], RGB histograms are chosen as the color descriptor to compute contrast between 

regions. In this study, we use color names to describe region features and compare with RGB 

histograms. The color name descriptor (CN) is defined as a vector consisting of every color 

name’s probability for given region  . 

 

   { (   | )  (   | )    (    | )}                          (4) 

with 

 (   | )  
 

 
∑  (   | ( ))                                    (5) 

 

where   stands for the pixel in region  ,   is the total number of pixels,  ( ) is the pixel 

value in        color space and  (   | ( )) is the conditional probability of color name   
for a given  ( ), which can be obtained from the learned  ( | ). 

When comparing CN with RGB histograms, we first examine the illumination invariance. 

Koen E.A [26] considered RGB histograms as a combination of three 1-D histograms, based 

on the R, G and B channels, possessing no invariance properties. The color name descriptor 

displays a certain amount of photometric invariance because colors with small differences 

that often occur together are more likely to be found in the same topic. For example, the label 

yellow includes highly saturated yellow and dark yellow that is caused by shadows or 

shading. In the learning stage, all these colors will be captured by  ( |        ). Second, 

we consider the discrimination and compactness of the two descriptors such as [22] does. The 

KL-ratio of the descriptor is computed between inter-class KL divergence and intra-class KL 

divergence in the bounding box of each object category in PASCAL VOC 2007 and the 

MSRA dataset as follows: 

 

         
∑      (     )         

∑      (     )             

                                   (6) 

where 

  (     )  ∑   
 
   ( )   

  ( )

  ( )
                                       (7) 

(a) (b) 

(c) (d) 
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and    is the histogram of the bounding box   over the   visual words  . Indices      

represent bounding boxes which belong to class  , while     are random samples of the 

bounding boxes that are not the same class as   . A higher KL-ratio indicates a more 

discriminative and compact descriptor because the inter-class KL divergence is larger than 

the intra-class KL divergence. In Fig. 5, we show the average KL-ratio of RGB histograms 

and the color name descriptor. The RGB histograms used in [7] include 1728 theoretical 

dimensions; however, to increase the speed of the algorithm, only 85 dimensions are actually 

used. For comparison, we changed the dimensions of the RGB histograms from 11 (the same 

as the number of color names) to 85. Fig. 5 shows that CN is superior to the RGB histograms 

in both compactness and discrimination even when the number of histograms is increased to 

85. We also find that both the CN and the RGB histograms result in a better KL-ratio on the 

MSRA dataset than on PASCAL VOC 2007. The reason is that PASCALVOC 2007 is shape 

predominant and the MSRA dataset is color predominant. Based on the analysis and the 

experimental results, we adopt CN as the color descriptor to compute region contrast. 

 
Fig. 5. KL-ratio of CN and RGB histograms on PASCAL VOC 2007 and the MSRA dataset. 

3.3 Saliency Evaluation 

To evaluate the saliency, two features are considered, the spatial compactness of every color 

name and the color contrast at the region level. Each color name appears in the spatial domain 

with a certain spread over the image. The less the color name spreads, the more salient it is 

[27]. The spread of a color cluster is evaluated by the distance in the spatial domain between 

color clusters rather than by intra spatial variance alone because there can be colors with 

similar intra spatial variance, but their compactness or relative spread maybe different. The 

relative spread of a cluster is quantified by the distance from the cluster’s pixels to the 

centroids of the other clusters. For example, the distance   (   ) between clusters   and   
quantifies the relative spread of cluster   with respect to cluster   in the spatial domain. Every 

pixel in the image belongs to different color names in a probabilistic manner. 
 

  (   )  
∑ ‖    ‖

 
   ( )    

∑   ( )    

                                        (8) 

 
where   is a pixel of cluster   and   ( ) is the probability that   belongs to color name   in 
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the original image. Additionally,    is the spatial mean of cluster  , which is computed as 

follows: 

 

   [
  ( )

  ( )
]         ( )  

∑   ( )      

∑   ( )    

        ( )  
∑   ( )      

∑   ( )    

                     (9) 

 

where (   ) is the location of pixel   of cluster   .  
The compactness of the cluster   in the spatial domain is calculated as follows: 

 

     (∑   (   )   )
  

                                              (10) 
 

By considering the relative spread, we not only eliminate the background color names that 

have large spatial variance but also bias the color names that appear in the center of the image 

with more importance. This happens because the cluster located in the center of an image 

results in shorter distances to other clusters’ centroids compared with the ones located at the 

image edges. The feature maps created by spatial compactness are shown in Fig. 6. 

Researchers have previously used color spatial distribution for salient object detection. In 

[13], the spatial distribution of a component is described by computing the intra spatial 

variance of the color. In addition, to emphasize the color components that located at the image 

center, a center weight is introduced. Our method is similar to [13] that each pixel is assigned 

to a color cluster (component) in a probabilistic manner; however, relative spread is 

introduced in our method to compute the spatial compactness of clusters and bias the colors 

that occur near the center of the image. Fig. 6 shows some feature maps produced by our 

method and the method in [13]. Comparison of two methods in the 1000-image dataset is 

shown in Fig. 8. 

 

 
Fig. 6. From left to right are original images, feature maps created by the method in [13] and feature 

maps created by our method. 

 

Now consider saliency caused by regional contrast. In section 3.2, we segmented the image 

into regions and described each region with a discriminative and compact color descriptor CN. 

The saliency of a region is based on its contrast with respect to other regions in the image in the 

color domain. The contrast of region   belongs in cluster   can be quantified by the 

inter-region distance between the color descriptors as follows: 
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      ∑   (      )                                                 (11) 

with 

  (     )   (       )                                           (12) 
 

Where     and     are the color name descriptors of    and   , respectively, and 

 (       ) is the Euclidean distance between the two color descriptors. 

We combine region contrast with cluster compactness by propagating the color cluster’s 

saliency values to the corresponding regions. A more compact and higher contrast region is 

more salient. Hence, the saliency of region   in color cluster   is as follows: 

 

             (    )                                           (13) 
 

In the experiment, we find that the relative spatial compactness measure,     , is more 

discriminative than the region contrast,      . Therefore, we use an exponential function to 

emphasize spatial compactness [28]. Before converging, both feature maps,      and      , 

are normalized to the range [0,1] using the formula ((                     ))  
((                   ) ). A saliency map is then generated according to Equation 13, 

and normalized to be a gray-scale image, as shown in Fig. 7. 

 

 
Fig. 7. Illustration of salient object detection using our model. (a) Original image, (b) feature map of 

cluster spatial compactness, (c) feature map generated by regional contrast and (d) final saliency map. 

4. Experimental Results and Analysis 

In saliency detection, several datasets are publicly available. One is the MSRA [20] dataset, 

which includes 20,000 images labeled by three users and 5000 images labeled by nine users. 

The 1000-image dataset is derived from the MSRA dataset by Achanta et al. [15], creating an 

object-contour ground truth database. The background structures of images from 1000-image 

dataset are primarily simple and smooth. Therefore, another complex scene saliency dataset 

(CSSD) with 200 images is constructed [30]. The images of CSSD are collected from BSD300 

[31], VOC dataset and internet. When learning color names, we chose 100 images for every 

color from the MSRA dataset. For salient object detection, the 1000-image and CSSD datasets 

(a) (b) 

(c) (d) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 11, Nov. 2013                              2746 

Copyright ⓒ 2013 KSII 

are used.  

To evaluate the results of our approach, we employ two evaluation methodologies provided 

by Achanta [15]. In the first method, a fixed threshold is adopted to obtain a binary 

segmentation. The segmented image is then compared with the ground truth mask to obtain the 

precision and recall. To reliably compare how well various saliency detection methods 

highlight salient objects in images, a threshold,  , is set from 0 to 255. As   is changed, 

different precision-recall pairs are obtained, and a precision-recall curve is the result. 

For the second evaluation method, an adaptive threshold is adopted. The saliency map is 

first over-segmented using mean-shift, and then the average saliency is calculated for every 

region and for the entire image. Regions with saliency more than twice the average image 

saliency are set as foreground. Average precision, recall, and F-measure are compared over the 

entire ground-truth database. F-measure is defined as   ((      )         
      ) (                    ), where        as in [7,15]. 

Comparisons with different components. As mentioned above, our final saliency map is a 

combination of two feature maps, cluster spatial compactness and region contrast. The 

precision-recall curves with a fixed threshold for different components are shown in Fig. 8; the 

performance of color spatial distribution in [13] and the RC method without spatial weighting 

(NRC) [7] are also included. For the NRC, we use the authors’ implementation, while for the 

spatial distribution in [13], we re-implemented the algorithm, and the pixels’ probabilities of 

different components are computed by  ( | ) as is the case in our model. The results show 

that our cluster spatial compactness, measured by relative spread, performs better than the 

approach used in [13]. In addition, we compared our color name regional contrast method, 

CNRC, with NRC. CNRC yields higher precision than NRC, which coincides with the 

comparison between the color descriptors CN and the RGB histograms. As for image 

segmentation before region contrast computation, we attempted the graph-based segmentation 

method as in [7]; however, this resulted in worse performance when combined with a CN 

descriptor. The segmentation method based on pixel assignment is more consistent with CN 

and generally yields better results. 

 
Fig. 8. Precision-recall curves of our method compared with different components on the 

1000-image dataset. The performance of color spatial distribution in [13] and NRC in [7] are also 

included. 

 

Comparisons with state-of-the-art methods. We compared our method with the 

following 6 state-of-the-art methods: GB[16], FT[15], CA[14], LC[17], MSSS[18] and RC[7]. 

All of these methods have been recently published and are cited frequently; moreover, RC is 

related to our method. 
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The precision-recall curves on the 1000-image dataset are shown in Fig. 9. Our method has 

a better precision-recall curve than GB, FT, CA, LC and MSSS. Compared to RC, our method 

achieves higher accuracy with a high threshold and becomes lower when the recall is above 

0.85. This is because the salient pixels from our method fall well within the salient regions and 

have near-uniform values, but don’t cover the entire salient object such as RC when the 

threshold is too small. When the image scenes are more complex, our method results in better 

performance than RC. Fig. 10 shows the precision-recall curves of different methods on the 

CSSD dataset. All the methods result in inferior performance on this dataset than on the 

1000-image dataset except GB. However, our method consistently outperforms existing 

saliency methods on the CSSD dataset, yielding higher precision and better recall rates. Both 

our method and RC require over-segmentation and calculate saliency by regional contrast; 

however, our method is based on the color name descriptor, which is more discriminative and 

compact than RGB histograms. Moreover, we take the color clusters’ spatial compactness into 

account and combine it with the regional contrast method. Both improvements contribute to 

the high precision of our method. 

As shown in Fig. 11 and Fig. 12, our method also obtains the best precision, recall and 

F-measure on both the 1000-image and the CSSD datasets. Saliency maps of our method 

contain more pixels with higher saliency value. In other words, our saliency maps can more 

easily be segmented with the sample algorithm. The F-measure for the RC method seems to be 

different from the one that is demonstrated in the original paper. The reason is that saliency 

maps of RC can be well-segmented by a complicated segmentation method, such as GrabCut 

[29], which is iteratively applied to improve the saliency cut. However, we use sample 

adaptive-thresholding segmentation, which only considers the saliency values’ relation 

between segments and the entire image. Thus, the F-measure of the RC method obtained by 

our method will be lower than the one in the original paper. 

 

 
Fig. 9. Precision-Recall curves on the 1000-image dataset compared with GB[16], FT[15], CA[14], 

LC[17], MSSS[18] and RC[7]. 
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Fig. 10. Precision-Recall curves on the CSSD dataset compared with GB[16], FT[15], CA[14], 

LC[17], MSSS[18] and RC[7]. 

 

 
Fig. 11. Precision-recall bars over the 1000-image dataset for different methods using 

adaptive-thresholding segmentation. Our method shows high precision, recall, and F-measure. 

 
 

Fig. 12. Precision-recall bars over the CSSD dataset for different methods using 

adaptive-thresholding segmentation. 
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Performance evaluation on noisy dataset. The proposed method works properly for noise 

free images, its performance is still not investigated for noisy images. So, we compare our 

method with other state-of-the-art methods under the noise corruption images. We add 

Gaussian noise of mean 0 and variance 0.05 to the 1000-image dataset, and then test the 

detection performance. Fig. 13 shows the precision-recall curves of all the methods. Fig. 14 

shows a sample of visual comparison in noisy image. 

 

 
Fig. 13. Precision-Recall curves on the noise corruption images compared with GB[16], FT[15], 

CA[14], LC[17], MSSS[18] and RC[7]. 

 

Some visual comparisons of saliency maps produced by different methods are shown in Fig. 

15. Experiments show that our method is more effective for objects with vivid colors, such as 

flowers and road signs, or for objects with high contrast with backgrounds in color. Moreover, 

our method works well for noisy and complex scene images. For images in which color plays 

less of a role in saliency, our method does not provide that much benefit, as shown in Fig. 16. 

5. Conclusions 

In this study, we propose a novel unified framework for saliency object detection. In the model, 

an image is treated as a composition of eleven basic color names. Every pixel belongs to a 

color name in a probabilistic manner. Based on that idea, the images are segmented into 

different color clusters, and each cluster includes some regions. The spatial compactness of 

clusters is measured by the relative spread of the color names, and the feature map of the 

spatial distribution can be obtained. Then, we consider the regional contrast in which regional 

saliency is quantified by inter-region distances between the color name descriptors. Finally, 

we take the spatial distribution of the color names into account and modulate the region’s 

saliency value by the corresponding cluster compactness. Our approach achieves the best 

results compared with some state-of-the-art methods when applied to the public datasets. 

Furthermore, it will obtain better performance when considering task-dependent applications 

such as road sign detection, which requires further study. 
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(a) Original    (b) GB        (c) LC       (d) CA       (e) MSSS     (f) FT         (g) RC       (h) Ours      (i) GT 

Fig. 14. Salient objects extracted using different methods for noisy image. The saliency maps created by 

noise free image are shown in the first row, and the saliency maps created by Gaussian noise image are 

in the second row. 

 
(a) Original    (b) GB        (c) LC       (d) CA       (e) MSSS     (f) FT         (g) RC       (h) Ours      (i) GT 

Fig. 15. Examples of salient objects extracted using different methods. (a) Original images, saliency 

regions produced by (b) GB, (c) FT, (d) CA, (e) LC, (f) MSSS, (g) RC and (h) our method. (i) Human 

labeled ground truth. 
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Fig. 16. Example images in which color plays a smaller role in saliency. The original images are in the 

first row, and the saliency maps are in the second row. 
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