• Title/Summary/Keyword: detection board

Search Result 382, Processing Time 0.031 seconds

ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL

  • Sangha, M.S.;Yu, D.L.;Gomm, J.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.637-650
    • /
    • 2007
  • A new on-line fault detection and isolation(FDI) scheme has been proposed for engines using an adaptive neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly implemented in an on-board diagnosis system(hardware). The robustness of the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring simultaneously. The evaluations are performed using a mean value engine model(MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.

Recognition of PCB Components Using Faster-RCNN (Faster-RCNN을 이용한 PCB 부품 인식)

  • Ki, Cheol-min;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.166-169
    • /
    • 2017
  • Currently, studies using Deep Learning are actively carried out showing good results in many fields. A template matching method is mainly used to recognize parts mounted on PCB(Printed Circuit Board). However, template matching should have multiple templates depending on the shape, orientation and brightness. And it takes long time to perform matching because it searches for the entire image. And there is also a disadvantage that the recognition rate is considerably low. In this paper, we use the Faster-RCNN method for recognizing PCB components as machine learning for classifying several objects in one image. This method performs better than the template matching method, execution time and recognition.

  • PDF

Design of FPGA in Power Control Unit for Control Rod Control System (원자로 제어봉 구동장치 제어시스템용 전력제어기 FPGA 설계)

  • Lee, Jong-Moo;Shin, Jong-Ryeol;Kim, Choon-Kyung;Park, Min-Kook;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.563-566
    • /
    • 2003
  • We have designed the power control unit which belongs to the power cabinet and controls the power supplied to Control Rod Drive Mechanism(CRDM) as a digital system based on Digital Signal Processor(DSP). The power control unit dualized as the form of Master/Slave has had its increased reality. The Central Process Unit(CPU) board of a power control unit possesses two Digital Signal Processors(DSPs) of the control DSP for performing the tasks of power control and system monitoring and the communication of the Control DSP and the Communication DSP. To accomplish the functions requested in the power control unit effectively, we have installed Field Programmable Gate Arrays(FPGAS) on the CPU board and have FPGAs perform the memory mapping, the generation of each chip selection signal, the giving and receiving of the signals between the power controllers dualized, the fault detection and the generation of the firing signals.

  • PDF

A lightweight true random number generator using beta radiation for IoT applications

  • Park, Kyunghwan;Park, Seongmo;Choi, Byoung Gun;Kang, Taewook;Kim, Jongbum;Kim, Young-Hee;Jin, Hong-Zhou
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.951-964
    • /
    • 2020
  • This paper presents a lightweight true random number generator (TRNG) using beta radiation that is useful for Internet of Things (IoT) security. In general, a random number generator (RNG) is required for all secure communication devices because random numbers are needed to generate encryption keys. Most RNGs are computer algorithms and use physical noise as their seed. However, it is difficult to obtain physical noise in small IoT devices. Since IoT security functions are required in almost all countries, IoT devices must be equipped with security algorithms that can pass the cryptographic module validation programs of each country. In this regard, it is very cumbersome to embed security algorithms, random number generation algorithms, and even physical noise sources in small IoT devices. Therefore, this paper introduces a lightweight TRNG comprising a thin-film beta-radiation source and integrated circuits (ICs). Although the ICs are currently being designed, the IC design was functionally verified at the board level. Our random numbers are output from a verification board and tested according to National Institute of Standards and Technology standards.

Surface plasmon resonance sensor (표면 플라스몬 공명 센서의 제작)

  • Han, Won-Sik;Jung, Kyu-Jin;Lee, Sang-Won;Hong, Suk-Young;Lee, Young-Hoon;Hong, Tae-Kee
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • The application and analysis of the interaction of various biomaterials including the concentration of biomaterials, thickness, and the ability of the detection of the analytical kinetic data of special biomaterials have been performed by SPR(surface plasmon resonance) sensor. To fabricate the scanning SPR, we designed data acquisition board and LabVIEW program for the personal computer to control the SPR sensor and collect the data from detector.

A Study on the Test Strategy of Digital Circuit Board in the Production Line Based on Parallel Signature Analysis Technique (PSA 기법에 근거한 생산라인상의 디지털 회로 보오드 검사전략에 대한 연구)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.768-775
    • /
    • 2004
  • The SSA technique in the digital circuit test is required to be repeated the input pattern stream to n bits output nodes n times in case of using a multiplexor. Because the method adopting a parallel/serial bit convertor to remove this inefficiency has disadvantage of requiring the test time n times for a pattern, the test strategy is required, which can enhance the test productivity by reducing the test time based on simplified fault detection mechanism. Accordingly, this paper proposes a test strategy which enhances the test productivity and efficiency by appling PAS (Parallel Signature Analysis) technique to those after analyzing the structure and characteristics of the digital devices including TTL and CMOS family ICs as well as ROM and RAM. The PSA technique identifies the faults by comparing the reminder from good device with reminder from the tested device. At this time, the reminder is obtained by enforcing the data stream obtained from output pins of the tested device on the LFSR(Linear Feedback Shift Resister) representing the characteristic equation. Also, the method to obtain the optimal signature analyzer is explained by furnishing the short bit input streams to the long bit input streams to the LFSR having 8, 12, 16, 20bit input/output pins and by analyzing the occurring probability of error which is impossible to detect. Finally, the effectiveness of the proposed test strategy is verified by simulating the stuck at 1 errors or stuck at 0 errors for several devices on typical 8051 digital board.

The Design and Experiment of AI Device Communication System Equipped with 5G (5G를 탑재한 AI 디바이스 통신 시스템의 설계 및 실험)

  • Han Seongil;Lee Daesik;Han Jihwan;Moon Hhyunjin;Lim Changmin;Lee Sangku
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • In this paper, IO+5G dedicated hardware is developed and an AI device communication system equipped with a 5G is designed and tested. The AI device communication system equipped with a 5G receives the collected real-time images and the information collected from the IoT sensor in real time is to analyze the information and generates the risk detection events in the AI processing board. The event generated in the AI processing board creates a 5G channel in the dedicated hardware equipped with IO+5G. The created 5G channel delivers event video to the control video server. The 5G based dongle network enables faster data collection and more precise data measurement compared to wireless LAN and 5G routers. As a result of the experiment in this paper, the average test result of the 5G dongle network is about 51% faster than the Wi-Fi average test result in downlink and about 40% faster in uplink. In addition, when comparing the test result with terms of the 5G rounter to be set to 80% upload and 20% download, the average test result is that the 5G dongle network is about 11.27% faster when downloading and about 17.93% faster when uploading. when comparing the test result with terms of the the router to be set to 60% upload and 40% download, the 5G dongle network is about 11.19% faster when downlinking and about 13.61% faster when uplinking. Therefore, in this paper it describes that the developed 5G dongle network can improve the results by collecting data and analyzing it faster than wireless LAN and 5G routers.

Comparison of Deep Learning Algorithm in Bus Boarding Assistance System for the Visually Impaired using Deep Learning and Traffic Information Open API (딥러닝과 교통정보 Open API를 이용한 시각장애인 버스 탑승 보조 시스템에서 딥러닝 알고리즘 성능 비교)

  • Kim, Tae hong;Yeo, Gil Su;Jeong, Se Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.388-390
    • /
    • 2021
  • This paper introduces a system that can help visually impaired people to board a bus using an embedded board with keypad, dot matrix, lidar sensor, NFC reader, a public data portal Open API system, and deep learning algorithm (YOLOv5). The user inputs the desired bus number through the NFC reader and keypad, and then obtains the location and expected arrival time information of the bus through the Open API real-time data through the voice output entered into the system. In addition, by displaying the bus number as the dot matrix, it can help the bus driver to wait for the visually impaired, and at the same time, a deep learning algorithm (YOLOv5) recognizes the bus number that stops in real time and detects the distance to the bus with a distance detection sensor such as lidar sensor.

  • PDF

Development of a Real-time Error-detection System;The Case study of an Electronic Jacquard

  • Huh, Jae-Yeong;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2588-2593
    • /
    • 2003
  • Any system has the possibility of an error occurrence. Even if trivial errors were occurred, the original system would be fatally affected by the occurring errors. Accordingly, the error detection must be demanded. In this paper, we developed a real-time error detection system would be able to apply to an electronic Jacquard system. A Jacquard is a machine, which controls warps while weaving textiles, for manufacturing patterned cloth. There are two types of mechanical and electronic Jacquard. An electronic Jacquard is better than a mechanical Jacquard in view of the productivity and realizability for weaving various cloths. Recent weaving industry is growing up increasingly due to the electronic Jacquard. But, the problem of wrong weaving from error data exists in the electronic Jacquard. In this research, a real-time error detection system for an electronic Jacquard is developed for detecting errors in an electronic Jacquard in real-time. The real-time system is constructed using PC-based embedded system architecture. The system detects the occurring errors in real-time by storing 1344 data transferred in serial from an electronic Jacquard into memory, and then by comparing synchronously 1344 data stored into memory with 1344 data in a design file before the next data would be transferred to the Jacquard for weaving. The information of detected errors are monitored to the screen and stored into a file in real-time as the outputs of the system. In this research, we solve the problem of wrong weaving through checking the weaving data and detecting the occurred errors of an electronic Jacquard in real-time.

  • PDF

Sensorless Detection of Position and Speed in Brushless DC Motors using the Derivative of Terminal Phase Voltages Technique with a Simple and Versatile Motor Driver Implementation

  • Carlos Gamazo Real, Jose;Jaime Gomez, Gil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1540-1551
    • /
    • 2015
  • The detection of position and speed in BLDC motors without using position sensors has meant many efforts for the last decades. The aim of this paper is to develop a sensorless technique for detecting the position and speed of BLDC motors, and to overcome the drawbacks of position sensor-based methods by improving the performance of traditional approaches oriented to motor phase voltage sensing. The position and speed information is obtained by computing the derivative of the terminal phase voltages regarding to a virtual neutral point. For starting-up the motor and implementing the algorithms of the detection technique, a FPGA board with a real-time processor is used. Also, a versatile hardware has been developed for driving BLDC motors through pulse width modulation (PWM) signals. Delta and wye winding motors have been considered for evaluating the performance of the designed hardware and software, and tests with and without load are performed. Experimental results for validating the detection technique were attained in the range 5-1500 rpm and 5-150 rpm under no-load and full-load conditions, respectively. Specifically, speed and position square errors lower than 3 rpm and between 10º-30º were obtained without load. In addition, the speed and position errors after full-load tests were around 1 rpm and between 10º-15º, respectively. These results provide the evidence that the developed technique allows to detect the position and speed of BLDC motors with low accuracy errors at starting-up and over a wide speed range, and reduce the influence of noise in position sensing, which suggest that it can be satisfactorily used as a reliable alternative to position sensors in precision applications.