• Title/Summary/Keyword: detected object

검색결과 691건 처리시간 0.026초

객체와 배경 히스토그램을 활용한 개선된 보행자 검출 (Improved Pedestrian Detection Using Object and Background Histograms)

  • 정진식;오정수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.410-412
    • /
    • 2021
  • 본 논문은 객체와 배경 히스토그램을 활용한 개선된 보행자 검출 방식을 제안하고 있다. HOG & SVM 알고리즘을 통해 검출한 객체는 사각형 형태로 검출된다. 사각형 영역 안에는 배경과 객체의 영역이 혼합되어있다. 배경을 제외한 객체의 영역만을 검출한다면 객체 관련 다양한 정보를 쉽게 얻을 수 있다. 검출된 사각형의 크기를 객체의 크기에 맞게 x-y축 투영 알고리즘을 사용하여 재조정한다. 그리고 나서 재조정 된 사각형 내의 객체에 대한 히스토그램을 바탕으로 배경과 객체를 구분하여 개선된 객체를 검출한다. 검출한 객체와 원본의 객체를 비교하는 신뢰성 평가인 정밀도와 재현율의 평균값이 각각 97.9%와 90%를 보이고 있다.

  • PDF

지하 주차장 차량 추적을 위한 객체의 이동 방향 추정 (Estimation of Moving Direction of Objects for Vehicle Tracking in Underground Parking Lot)

  • ;김재민
    • 한국멀티미디어학회논문지
    • /
    • 제24권2호
    • /
    • pp.305-311
    • /
    • 2021
  • One of the highly reliable object tracking methods is to trace objects by associating objects detected by deep learning. The detected object is represented by a rectangular box. The box has information such as location and size. Since the tracker has motion information of the object in addition to the location and size, knowing additional information about the motion of the detected box can increase the reliability of object tracking. In this paper, we present a new method of reliably estimating the moving direction of the detected object in underground parking lot. First, the frame difference image is binarized for detecting motion energy, change due to the object motion. Then, a cumulative binary image is generated that shows how the motion energy changes over time. Next, the moving direction of the detected box is estimated from the accumulated image. We use a new cost function to accurately estimate the direction of movement of the detected box. The proposed method proves its performance through comparative experiments of the existing methods.

개인 정보가 노출된 목표 객체의 블로킹 알고리즘 (A Blocking Algorithm of a Target Object with Exposed Privacy Information)

  • 장석우
    • 한국산학기술학회논문지
    • /
    • 제20권4호
    • /
    • pp.43-49
    • /
    • 2019
  • 초고속의 유무선 인터넷은 다양한 형태의 미디어 데이터를 손쉽게 획득할 수 있는 유용한 창구이다. 이에 반해, 일반인들이 개인 정보가 노출된 대상 객체를 포함하고 있는 미디어 데이터까지도 인터넷을 통해 용이하게 획득할 수 있으므로 사회적으로 문제가 되고 있다. 본 논문에서는 입력되는 여러 가지 종류의 영상으로부터 개인 정보가 노출된 대상 객체를 학습 알고리즘을 이용해 강인하게 검출하고, 검출된 대상 객체 영역을 효과적으로 블로킹하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 뉴럴 네크워크 기반의 학습 알고리즘을 사용해 영상으로부터 개인 정보를 포함하고 있는 대상 객체만을 검출한다. 그런 다음, 격자형 모자이크를 생성해 이전 단계에서 검출된 대상 객체 영역 위에 오버랩함으로써 개인 정보를 포함하고 있는 객체 영역을 효과적으로 블로킹한다. 실험 결과에서는 제안된 알고리즘이 입력되는 다양한 영상으로부터 개인 정보가 노출된 대상 영역을 강인하게 검출하고, 검출된 영역을 모자이크 처리를 통해 효과적으로 블로킹한다는 것을 보여준다. 본 논문에서 제시된 객체 블로킹 방법은 객체 보안, 물체 추적, 영상 블로킹 등과 같은 컴퓨터 비전과 관련된 여러 응용 분야에서 유용하게 활용될 것으로 예상된다.

실시간 영상 분석에 의한 이동 물체 추적 (Moving Object Tracking by Real Time Image Analysis)

  • 구상훈;이은주
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2003년도 추계공동학술대회
    • /
    • pp.145-156
    • /
    • 2003
  • This paper for real time object tracking in this treatise detect histogram analysis that is accumulation value of binary conversion density and edge information and body that move by real time use of difference Image techniques and proposed method to object tracking. Firstly, we extract edge that can reduce quantity of data keeping information about form of input image in object detection. Object is extracted by performing difference image and binarization in edge image. Area of detected object is determined by threshold value that divide sum of horizontal accumulation value about binary conversion density by value that add horizontalityㆍverticality maximum accumulation value. Object is tracked by comparing similarity with object that is detected in previous frame and present frame. As experiment result, proposed algorithm could improve the object detection speed, and could track object by real time and could track local movement.

  • PDF

YOLOv5를 이용한 객체 이중 탐지 방법 (Object Double Detection Method using YOLOv5)

  • 도건우;김민영;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.54-57
    • /
    • 2022
  • 대한민국은 산불의 위험으로부터 취약한 환경을 가지고 있으며, 이로 인해 매년 큰 피해가 발생하고 있다. 이를 예방하기 위해 많은 인력을 활용하고 있으나 효과가 미흡한 실정이다. 만약 인공지능 기술을 통해 산불을 조기 발견해 진화된다면 재산 및 인명피해를 막을 수 있다. 본 논문에서는 산불의 피해를 최소화하기 위한 오브젝트 디텍션 모델을 제작하는 과정에서 발생하는 데이터 수집과 가공 과정을 최소화하는 목표로 한 객체 이중 탐지 방법을 연구했다. YOLOv5에서 한정된 이미지를 학습한 단일 모델을 통해 일차적으로 원본 이미지를 탐지하고, 원본 이미지에서 탐지된 객체를 Crop을 통해 잘라낸다. 이렇게 잘린 이미지를 재탐지하는 객체 이중 탐지 방법을 통해 오 탐지 객체 탐지율의 개선 가능성을 확인했다.

  • PDF

에지 트레이싱 기법을 이용한 사각형 물체의 선형 특징점 검출 (Linear Feature Detection of Rectangular Object Area using Edge Tracing-based Algorithm)

  • 오중원;한희일
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2092-2095
    • /
    • 2003
  • In this paper, we propose an algorithm to extract rectangular object area such 3s Data Matrix two-dimensional barcode using edge tracing-based linear feature detection. Hough transform is usually employed to detect lines of edge map. However, it requires parametric image space, and does not find the location of end points of the detected lines. Our algorithm detects end points of the detected lines using edge tracing and extracts object area using its shape information.

  • PDF

신경망 기반의 유기된 물체 인식 방법 (The Method of Abandoned Object Recognition based on Neural Networks)

  • 류동균;이재흥
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1131-1139
    • /
    • 2018
  • 본 논문에서는 합성곱 신경망을 이용한 유기된 물체 인식 방법을 제안한다. 유기된 물체 인식 방법은 영상 내에서 유기 물체에 대한 영역을 먼저 검출하며 검출된 영역이 있을 경우 해당 영역에 합성곱 신경망을 적용하여 어떤 물체를 나타내는지 인식하는 과정을 거친다. 실험은 쓰레기 무단투기를 검출하는 응용 시스템을 통해 진행되었다. 실험 결과, 유기 물체에 대한 영역을 효율적으로 검출하는 것을 볼 수 있었다. 검출된 영역은 합성곱 신경망으로 들어가 쓰레기인지 아닌지 분류되는 과정을 거쳤다. 이를 위해 자체적으로 수집한 쓰레기 데이터와 오픈 데이터베이스로 합성곱 신경망을 학습시켰다. 학습 결과, 학습에 포함되지 않은 테스트셋에 대해 약 97%의 정확도를 달성하였다.

다양한 실내 환경변수로부터 강인한 객체 검출 (Robust Object Detection from Indoor Environmental Factors)

  • 최미영;김계영;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.41-46
    • /
    • 2010
  • 본 논문에서는 다양한 환경변수가 존재하는 실내에서 효율적인 객체를 검출하기 위한 방법을 제안한다. 일반적으로 실내 환경은 조명의 변화와 객체에 의해 발생된 그림자, 바닥면에 반사된 조명성분 등으로 인하여 정확한 객체 검출이 이루어지기 어려운 환경이다. 먼저 객체검출을 위한 배경영상을 생성한다. 영상 내에 객체가 존재하는 경우 이전에 생성된 배경영상과 현재 입력영상간의 유사도 비교를 통해 보정된 배경영상을 생성한다. 배경영상과 입력영상으로 생성한 평균영상과 보정된 배경영상을 이용하여 혼합영상을 생성한다. 마지막으로 혼합영상을 이용하여 입력된 영상으로부터 객체를 검출한다. 검출된 객체를 보완하기 위해 레이블링 과정을 통해 잡음 성분을 제거한 후 모폴로지 기법을 적용하여 객체영역 보완한다. 따라서 조명의 변화나 그림자와 같은 환경변수로부터 강인한 객체를 검출한다. 본 논문에서 제안한 시스템은 변형된 조명성분과 그림자 성분이 포함되어 있는 혼합영상을 사용하기 때문에 기존시스템보다 객체영역 검출이 더욱 효과적이다.

BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템 (A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.173-181
    • /
    • 2004
  • 본 논문에서는 움직이는 카메라로부터 획득한 연속영상에서 이동물체를 자동으로 검출하고 추적하는 시스템을 제안한다. 제안된 방법은 크게 이동물체 검출과 추적과정으로 나뉘어진다. 이동물체는 BBME(block-based motion estimation)와 DD(double difference)를 통합한 방법을 이용하여 검출된다. 검출된 이동물체는 히스토그램 백 프로젝션을 통하여 분할되며, 히스토그램 인터섹션과 XY-프로젝션을 사용하여 대상물체를 정합하고 추적된다. 본 논문에서는 컴퓨터 모의실험을 통하여 제안된 방법이 움직이는 카메라로부터 획득된 영상에서 이동물체를 검출하고 큰 오차 없이 추적함을 보였다.

Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템 (An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION)

  • 김종호;김상균;황구선;안상호;강병두
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.87-98
    • /
    • 2011
  • 동영상에서의 움직이는 객체 검출과 추적은 객체 식별, 상황인식, 지능형 영상 감시 시스템 등 많은 시각 기반 응용 시스템에서 기본적이고 필수적인 전처리 작업이다. 본 논문에서는 배경과 조명이 실시간으로 변화하는 상황에서 움직이는 객체를 빠르고 정확하게 추출하고 움직이는 객체가 다른 물체에 가려지는 경우에도 강인하게 객체를 추적하는 방법을 제안한다. 객체의 효과적인 검출을 위해서 효과적인 고유 공간과 Fuzzy C-means(FCM) 를 결합하여 사용하고 검출된 객체를 강인하게 추적하기 위해 Conditional Density Propagation (CONDENSATION) 알고리즘을 사용한다. 먼저 Principal Component Analysis(PCA)를 이용하여 배경 영상에서 수집한 학습데이터를 주성분(Principal component)으로 선형변환 한다. 주성분들의 고유 특성에 대한 해석을 통하여 객체와 배경에 대하여 판별 능력이 우수한 주성분을 선별하여 고유 배경을 구성한다. 다음으로 이전단계에서 구성된 고유 벡터와 입력 영상을 결합한 연산 결과를 FCM의 입력 값으로 사용해서 객체를 검출한다. 최종적으로 검출된 객체의 좌표를 CONDENSATION의 입력으로 사용해서 객체를 추적한다. 고정된 카메라에서 조명변화와 배경변화에 적용 가능한 시스템을 구현하기 위해 고정된 카메라에서 움직이는 다양한 객체가 포함된 영상을 수집하여 학습데이터로 구성하여 사용하였다. 실험 결과에 따르면 제안하는 방법이 조명변화와 배경변화 그리고 객체의 부분적 움직임에 모두 강인하게 객체를 검출하고 다른 물체나 배경에 의해 객체가 일부 가려지더라도 객체를 추적함을 보여준다.