• 제목/요약/키워드: design wind load concept

검색결과 27건 처리시간 0.024초

Fatigue of tubular steel lighting columns under wind load

  • Peil, U.;Behrens, M.
    • Wind and Structures
    • /
    • 제5권5호
    • /
    • pp.463-478
    • /
    • 2002
  • Lighting and traffic signal columns are mainly stressed by excitation due to natural, gusty wind. Such columns typically have a door opening about 60 cm above ground level for the connection of the buried cable with the column's electric system. When the columns around this notch are inadequately designed, vibrations due to gusty winds will produce considerable stress amplitudes in this area, which lead to fatigue cracks. To give a realistic basis for a reliable and economic design of lighting and traffic signal columns, a number of experimental and theoretical investigations have been made. The proposed design concept allows the life of such columns to be assessed with a satisfactory degree of accuracy.

저속 기어형 2MW급 풍력발전기 개념설계 (Conceptual Design of 2MW Wind Turbine Generator with Low-speed Gearbox)

  • 손영욱;김영찬;김용환;이응채;박인수;정진화;한경섭;전중환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.319-322
    • /
    • 2006
  • Under the national project for the development of 2MW wind energy convert system, we are under development of the prototype of 2MW wind turbine with low speed gearbox. This system adopts low speed gear box with planetary and spur gear and is pitch regulated variable speed type with the synchronous permanent magnet generator. The compromised size of generator in diameter and width are adopted to meet the structural design requirements. In this paper, the concept study for the type, the aerodynamic design for the blade and the details of load calculation will be presented. The detailed characteristics of the system will also be introduced.

  • PDF

해저자원(海底資源) 개발용(開發用) Semi-Submersible 설계기준(設計基準)의 정립(定立)을 위한 연구(硏究) (A Study on the Establishment of Basic Design Concept for Semi-Submersibles)

  • 박종은;김재근;황종흘;임상전;최항순
    • 대한조선학회지
    • /
    • 제20권2호
    • /
    • pp.1-20
    • /
    • 1983
  • In this paper design criteria for semi-submersibles, effective at the stage of basic design, are reviewed first generally. Thereafter an extensive study is focussed on essential problematic areas such as design load, heaving motion, overall structural analysis and welding technique. The necessity for this kind of research is apparent in the light of the fact that ocean exploration and exploitation becomes extended to deeper ocean and that semi-submersibles are the most favorite unit for operation under this environment. In some sense principles in naval architecture are indeed applicable to the design of semi-submersible. However, because of the difference in geometry between ships and semi-submersibles, there are significant deviations in design method. A thorough discussion is made on particular behaviours of a semi-submersible in stability, wave load, motion characteristics and structural responses. Then some calculation-procedures and design guidelines are tentatively proposed. A numerical calculation for a semi-submersible Sedco 708 is exemplified for better understanding of the concept. The structure has 4 main and another 4 secondary stabilizing columns with catamaran-type lower hull. In this example design condition is supposed to be 28m wave height, 90 knots wind speed for survival condition and seastate 6 for operational condition in water of 100m depth. The numerical result implies that the actual design of this model can be assessed close to optimum. Further intensive research is strongly required in the subject fields of dynamic stability, rational evaluation of wave load statistical basis for fatigue life judgement.

  • PDF

10MW급 풍력발전용 원형강관 멀티기둥타워의 부재유용도 개념설계 (Member Utilization Concept Design for Hollow Circular Section Multi-column Tower Subjected to 10MW Level Wind Turbines)

  • 김경식;김미진
    • 한국강구조학회 논문집
    • /
    • 제29권3호
    • /
    • pp.205-215
    • /
    • 2017
  • 본 연구에서는 10MW급 풍력하중을 받는 멀티기둥 타워시스템에 원형강관 부재의 구조안전성 및 경제성을 함께 검토하는 방식으로 부재 유용도에 근거한 개념설계의 예를 보였다. 단일 실린더형 타워를 대체할 수 있는 멀티기둥타워 구조의 구성에 관한 기본적인 가정을 정립하였고, 그에 따라 제안된 구조물을 모델링하고 해석하여 부재력을 확인하였다. 산정된 부재강도와 작용하중을 근간으로 제안된 멀티기둥타워의 각 부재별로 축력, 전단, 휨, 비틂에 대한 유용도가 산정되었고, 풍력타워로서의 적합성이 평가하였다. 멀티기둥 풍력타워의 개념설계에 채택될 수 있는 수준의 유용도 범위에서 강관 치수, 세장비 및 수평재 단수 등의 설계 매개변수를 제안하였다.

아웃리거 댐퍼 시스템의 고층건물 풍응답 진동제어 성능 평가 (Evaluation of Vibration Control Performance of Outrigger Damper System for Tall Buildings Subjected to Wind Loads)

  • 윤성욱;이령경;김광일;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제15권3호
    • /
    • pp.51-60
    • /
    • 2015
  • Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. An artificial wind of 1000 seconds with 0.1 second time steps was generated by using a Kaimal spectrum. Analysis results show that outrigger damper system is more effective up to 20-23% in the control of dynamic response compared to conventional outrigger system. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.

10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구 (Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade)

  • 김수현;신형기;방형준
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.369-374
    • /
    • 2016
  • 본 연구에서는 굽힘-비틀림 커플링(bend-twist coupled, BTC) 설계개념을 적용한 10 MW급 복합재 풍력 블레이드의 구조 최적 설계를 수행하였다. BTC 설계개념은 동적 하중 상황에서 블레이드의 굽힘과 비틀림 거동 사이의 연동을 유도하여, 단면 받음각 변화에 의한 수동적인 적응 하중저감이 가능하다. 인자연구를 통해 최적의 BTC 설계인자를 추출하여 블레이드 구조설계에 적용하였다. BTC 개념이 동적 하중 감소에 미치는 영향을 가늠하기 위해 블레이드 루트 부에서의 피로등가하중을 계산한 결과, BTC 개념이 적용된 블레이드를 적용한 경우 피로등가하중이 2-3% 정도 감소하는 것을 확인할 수 있었다. BTC 효과를 시험적으로 검증하기 위해 1:29 비율의 블레이드 stiffener 축소모델을 제작하였으며, 정하중 시험을 통해 처짐 거동 시 끝단에서의 비틀림을 측정하였다.

해풍(海風)을 이용한 하계(夏季) 도시열환경(都市熱環境)의 풍도(風道)계획과 인체의 쾌적성에 관한 연구 (Estimating the cooling effect of see breeze along canals and outdoor thermal comfort on urban heat load in summer)

  • 정창원;윤인;최영식
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.19-25
    • /
    • 1999
  • A new urban design method from the viewpoint of climate is considered to be desired for urban life. The authors verified on an environmental planning based on new urban design concept which introduced the effect of sea breeze blowing along canals. The field observation of urban thermal environment were carried out to examine the cooling effects of a river through city. The observations were conducted to find the effect of a sea breeze and climate in summer along canals. Effective distance from the sea and cooling effect of the sea breeze on urban temperature was analyzed. The thermal index using outdoor environment was modified with New Effective Temperature ET*. On the basis of the observation. Human thermal comfort is relieved and affected by sea breeze blowing along canals. The canals were utilized as the trail on which sea breeze blows towards the center of city. From these results, The wind trail is one of the effective passive design method from the viewpoint of urban climate.

  • PDF

아웃리거 댐퍼시스템의 감쇠와 강성에 따른 고층 건물 풍응답 제어 성능 평가 (Performance Evaluation of Wind Response Control of High-Rise Buildings by Damping and Stiffness of Outrigger Damper System)

  • 박광섭;김윤태
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, the concept of an outrigger damper system with a damper added to the existing outrigger system has been developed and applied for dynamic response control of high-rise buildings. However, the study on the structural characteristics and design method of Outrigger damper system is in the early stages. In this study, a 50 story high - rise building was designed and an outrigger damper system with viscoelastic damper was applied for wind response control. The time history analysis was performed by using the kaimal spectrum to create an artificial wind load for a total of 1,000 seconds at 0.1 second intervals. Analysis of the top horizontal maximum displacement response and acceleration response shows that outrigger damper systems are up to 28.33% and 49.26% more effective than conventional outrigger systems, respectively. Also, it is confirmed that the increase of damping ratio of dampers is effective for dynamic response control. However, since increasing the damping capacity increases the economic burden, it is necessary to select the appropriate stiffness and damping value of the outrigger damper system.

The Evolution of Outrigger System in Tall Buildings

  • Ho, Goman W.M.
    • 국제초고층학회논문집
    • /
    • 제5권1호
    • /
    • pp.21-30
    • /
    • 2016
  • The structural efficiency of tall buildings heavily depends on the lateral stiffness and resistance capacity. Among those structural systems for tall buildings, outrigger system is one of the most common and efficient systems especially for those with relatively regular floor plan. The use of outriggers in building structures can be traced back from early 50 from the concept of deep beams. With the rise of building height, deep beams become concrete walls or now in a form of at least one story high steel truss type of outriggers. Because of the widened choice in material to be adopted in outriggers, the form and even the objective of using outrigger system is also changing. In the past, outrigger systems is only used to provide additional stiffness to reduce drift and deflection. New applications for outrigger systems now move to provide additional damping to reduce wind load and acceleration, and also could be used as structural fuse to protect the building under a severe earthquake condition. Besides analysis and member design, construction issue of outrigger systems is somehow cannot be separated. Axial shortening effect between core and perimeter structure is unavoidable. This paper presents a state-of-the-art review on the outrigger system in tall buildings including development history and applications of outrigger systems in tall buildings. The concept of outrigger system, optimum topology, and design and construction consideration will also be discussed and presented.

수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구 (A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities)

  • 김현한;김광호
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.