• Title/Summary/Keyword: design provisions

Search Result 460, Processing Time 0.031 seconds

A Static Test of Concrete Barrier on Bridge Deck (교량 바닥판의 콘크리트 난간에 대한 정적 실험)

  • Kang, Jun-Wook;Lee, Jae-Hoon;Woo, Kwang-Sung;Ahn, Sang-Sub;Lee, Il-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.33-36
    • /
    • 2004
  • The current Korea bridge design specifications have no provisions about concrete Barrier. And there are no test results of registence strength of the concrete barrier at the vehicle collision sites. This paper reports experimental results of concrete barrier on bridge deck conctructed by standard drawing of SB5 grade. Eight specimens were tested under static test. The specimens are divided by two groups (D-series and B-series). D-series is to show failure pattern of bridge deck. B-series is to show failure pattern of concrete Barrier. The test results compared with calculation results using Yield-Line theory of AASHTO LRFD Bridge Design Specifications.

  • PDF

A review on BRB and SC-BRB members in building structures

  • Haider, Syed Muhammad Bilal;Lee, Dongkeun
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.609-623
    • /
    • 2021
  • Buckling restrained bracing (BRB) was firstly introduced in Japan construction industry in year 1989. With time, BRB performance has been advanced to self-centering BRB (SC-BRB) which has exceptional energy dissipation, addressing the improvement in the structure performance in post-seismic affect. Although the BRB performance specifications are defined in design codes of several countries, specific design provisions are not generally provided since BRBs are usually considered a manufactured device. Furthermore, most of review papers focused on BRB rather than SC-BRB. Thus, this paper explores the background of both BRB and SC-BRB. The importance of self-centering components in BRB and literature related to it have been studied. This review study also highlights the significance of corrosion-resistance materials in the configuring BRB and SC-BRB since most of such members are made of carbon steel that is susceptible to corrosion.

Tests and Design Provisions for Reinforced-Concrete Beams Strengthened in Shear Using FRP Sheets and Strips

  • Mofidi, Amir;Chaallal, Omar
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Numerous investigations of RC beams strengthened in shear with externally-bonded (EB) fibre-reinforced polymer (FRP) sheets, plates and strips have been successfully conducted in recent years. These valuable studies have highlighted a number of influencing parameters that are not captured by the design guidelines. The objective of this study was: (1) to highlight experimentally and analytically the influential parameters on the shear contribution of FRP to RC beams strengthened in shear using EB FRP sheets and strips; and (2) to develop a set of transparent, coherent, and evolutionary design equations to calculate the shear resistance of RC beams strengthened in shear. In the experimental part of this study, 12 tests were performed on 4,520-mm-long T-beams. The specimens were strengthened in shear using carbon FRP (CFRP) strips and sheets. The test variables were: (1) the presence or absence of internal transverse-steel reinforcement; (2) use of FRP sheets versus FRP strips; and (3) the axial rigidity of the EB FRP reinforcement. In the analytical part of this study, new design equations were proposed to consider the effect of transverse-steel in addition to other influential parameters on the shear contribution of FRP. The accuracy of the proposed equations has been verified in this study by predicting the FRP shear contribution of experimentally tested RC beams.

The Study on the Characteristic of the Ordinances Related to Community Planning in Seoul Focusing on the Activation of Community Planning (마을만들기 활성화 관점에서 본 서울시 마을만들기 조례 특성에 관한 연구)

  • Shin, Hwa-Kyoung;Jo, In-Sook;Ji, Ye-Jin
    • Journal of the Korean housing association
    • /
    • v.28 no.3
    • /
    • pp.23-33
    • /
    • 2017
  • The purpose of this study is to identify the characteristics of the community design ordinance in Seoul as view of the community design activation and to seek improvement. The findings of this study are as followings; Most of the provisions of the ordinance, such as the concept of community design, the basic plan, and the contents of the project, are defined in a similar manner. From the establishment of the concept of community design, it is necessary to establish the regulations that reflect the actual situation and characteristics of the village. In addition to physical facilities improvement, the ordinance should include support for securing space at the core center, which plays an important role in revitalizing community design. Step-by-step approaches are needed to understand the residents at the beginning of the project, because there is not enough practical support related to resident capacity and community solidarity. As the importance of the competent residents increases, the support elements related to humanware areas should also be expanded. In particular, the supporting process and contents for the support system and program for the training of village leaders and the securing of professional manpower should be well established.

Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks

  • Nehdi, M.;El Chabib, H.;Said, A.
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.81-100
    • /
    • 2006
  • To calculate the shear capacity of concrete beams reinforced with fibre-reinforced polymer (FRP), current shear design provisions use slightly modified versions of existing semi-empirical shear design equations that were primarily derived from experimental data generated on concrete beams having steel reinforcement. However, FRP materials have different mechanical properties and mode of failure than steel, and extending existing shear design equations for steel reinforced beams to cover concrete beams reinforced with FRP is questionable. This paper investigates the feasibility of using artificial neural networks (ANNs) to estimate the nominal shear capacity, Vn of concrete beams reinforced with FRP bars. Experimental data on 150 FRP-reinforced beams were retrieved from published literature. The resulting database was used to evaluate the validity of several existing shear design methods for FRP reinforced beams, namely the ACI 440-03, CSA S806-02, JSCE-97, and ISIS Canada-01. The database was also used to develop an ANN model to predict the shear capacity of FRP reinforced concrete beams. Results show that current guidelines are either inadequate or very conservative in estimating the shear strength of FRP reinforced concrete beams. Based on ANN predictions, modified equations are proposed for the shear design of FRP reinforced concrete beams and proved to be more accurate than existing equations.

Comparative performance of seismically deficient exterior beam-column sub-assemblages of different design evolutions: A closer perspective

  • Kanchana Devi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.177-191
    • /
    • 2017
  • In the present study, exterior beam column sub-assemblages are designed in accordance with the codal stipulations prevailed at different times prior to the introduction of modern seismic provisions, viz., i) Gravity load designed with straight bar anchorage (SP1), ii) Gravity load designed with compression anchorage (SP1-D), iii) designed for seismic load but not detailed for ductility (SP2), and iv) designed for seismic load and detailed for ductility (SP3). Comparative seismic performance of these exterior beam-column sub-assemblages are evaluated through experimental investigations carried out under repeated reverse cyclic loading. Seismic performance parameters like load-displacement hysteresis behavior, energy dissipation, strength and stiffness degradation, and joint shear deformation of the specimens are evaluated. It is found from the experimental studies that with the evolution of the design methods, from gravity load designed to non-ductile and then to ductile detailed specimens, a marked improvement in damage resilience is observed. The gravity load designed specimens SP1 and SP1-D respectively dissipated only one-tenth and one-sixth of the energy dissipated by SP3. The specimen SP3 showcased tremendous improvement in the energy dissipation capacity of nearly 2.56 times that of SP2. Irrespective of the level of design and detailing, energy dissipation is finally manifested through the damage in the joint region. The present study underlines the seismic deficiency of beam-column sub-assemblages of different design evolutions and highlights the need for their strengthening/retrofit to make them fit for seismic event.

Computational method in database-assisted design for wind engineering with varying performance objectives

  • Merhi, Ali;Letchford, Chris W.
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.439-452
    • /
    • 2021
  • The concept of Performance objective assessment is extended to wind engineering. This approach applies using the Database-Assisted Design technique, relying on the aerodynamic database provided by the National Institute of Standards and Technology (NIST). A structural model of a low-rise building is analyzed to obtain influence coefficients for internal forces and displacements. Combining these coefficients with time histories of pressure coefficients on the envelope produces time histories of load effects on the structure, for example knee and ridge bending moments, and eave lateral drift. The peak values of such effects are represented by an extreme-value Type I Distribution, which allows the estimation of the gust wind speed leading to the mean hourly extreme loading that cause specific performance objective compromises. Firstly a fully correlated wind field over large tributary areas is assumed and then relaxed to utilize the denser pressure tap data available but with considerably more computational effort. The performance objectives are determined in accordance with the limit state load combinations given in the ASCE 7-16 provisions, particularly the Load and Resistance Factor Design (LRFD) method. The procedure is then repeated for several wind directions and different dominant opening scenarios to determine the cases that produce performance objective criteria. Comparisons with two approaches in ASCE 7 are made.

Probability-Based USD Code for Reinforced Concrete (확률이론(確率理論)에 기초(基礎)한 철근(鐵筋)콘크리트 강도설계규준(强度設計規準))

  • Cho, Hyo Nam;Chang, Dong Il;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.53-60
    • /
    • 1986
  • This study is directed to propose a probability based LRFD design code, which could possibly replace the traditional USD provisions of the current code, based on the AFOSM reliability theory. The uncertainties of resistances and load effects for each R.C. structural elements are evaluated and adopted considering our practice, and a set of rational target reliability indices are selected based on the calibration with the reliability of the current R.C. design code and by considering the desired hierarchy of safety level. Then, a set of common load factors are chosen from the results of load and resistance factors which are computed by AFOSM method using the Rackwitz-Fiessler's efficient practical algorithm which is to transform the non-normal variables into the equivalent normal variables. It may be asserted that the proposed LRFD code for the R.C. building structures may have to be incorporated into the current RC. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

Simplified Design Equation of Lap Splice Length in Compression

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • With the emergence of ultra-high strength of concrete, the compression lap splice has become an important area of interest. According to ACI 318-08, a compression splice can be longer than a tension splice when high-strength concrete is used. By reevaluating the test results of compression splices and performing regression analysis, a simplified design equation for splice length in compression was developed based on the basic form of design equations for development/splice lengths of deformed bars and hooks in tension. A simple linear relation between $l_s/d_b$ and $f_{sc}\sqrt{f'_c}$ was assumed, and yields good values for the correlation coefficient and the mean and the COV (coefficient of variation) of the ratios of tests to predictions of splice strengths in compression. By including the 5% fractile coefficient of 0.83, a design equation for splice length in compression was developed. The splice length calculated using the proposed equation has a reliability that is equivalent to other provisions for reinforcing bars.

Seismic design of beam-column joints in RC moment resisting frames - Review of codes

  • Uma, S.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.579-597
    • /
    • 2006
  • The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam column joints. Large amount of research carried out to understand the complex mechanisms and safe behaviour of beam column joints has gone into code recommendations. This paper presents critical review of recommendations of well established codes regarding design and detailing aspects of beam column joints. The codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Eurocode 8 of EN 1998-1:2003. All three codes aim to satisfy the bond and shear requirements within the joint. It is observed that ACI 318M-02 requires smaller column depth as compared to the other two codes based on the anchorage conditions. NZS 3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain the axial load capacity of column by confinement. Significant factors influencing the design of beam-column joints are identified and the effect of their variations on design parameters is compared. The variation in the requirements of shear reinforcement is substantial among the three codes.