References
- ACI Committee 318, (ACI 318R-02), 'Building code requirements for structural concrete', American Concrete Institute, Farmington Hills, Michigan, USA, 2002, 445
- Canadian Standards (CSA S806-02), 'Design and construction of building components with fibre-reinforced polymers', Canadian Standards Association, Rexdale, Ontario, Canada, 2002, 116
- CSA A23.3-94 (1994), 'Design of concrete structures', Canadian Standards Association, Rexdale, Ontario, Canada, 220
- Duranavic, N., Pilakoutas, K. and Waldron, P. (1997), 'Test on concrete beams reinforced with glass fibre reinforced plastic bars', Proceeding of the Third International Symposium, Non-Metalic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan, 479-486
- El-Chabib, H. and Nehdi, M. (2005), 'Neural network modelling of properties of cement-based materials demystified', Advances in Cement Research, 17(3), 91-102 https://doi.org/10.1680/adcr.2005.17.3.91
- El-Sayed, A., El-Salakawy, E. and Benmokrane, B. (2005), 'Shear strength of one-way concrete slabs reinforced with fibre-reinforced polymer composite bars', J. Compos. Constr., ASCE, 9(2), 147-157 https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(147)
- Haykin, S. (1994), 'Neural networks: a comprehensive foundation', Macmillan, New York, 842
- ISIS Canada (2001), 'Reinforcing concrete structures with fibre-reinforced polymers', The Canadian Network of Centres of Excellence on Intelligent Sensing for Innovative Structures, Design Manual No.3, Zukewich, J., editor, University of Manitoba, Winnipeg, Manitoba, Canada, 133
- Japan Society of Civil Engineers (JSCE-97), 'Recommendations for design and construction of concrete structures using continuous fibre-reinforced materials', Concrete Engineering Series 23, Machida, A., editor, 1997, 325
- Joint ACI-ASCE Committee 445 (1998), 'Recent approaches to shear design of structural concrete', J. Struct. Eng., 124(12), 1375-1417 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
- MacGregor, J. C. and Bartlett, F. M. (2000), Reiriforced concrete: Mechanics and Design, First Canadian Edition, Prentice-Hall, Scarborough, Ont., Canada, 1042
- Razaqpur, A. G., Isgor, B. O., Greenaway, S. and Selley, A. (2004), 'Concrete contribution to the shear resistance of fibre-reinforced polymer reinforced concrete members', J. Compos. Constr., ASCE, 8(5), 452-460 https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(452)
- Russo, G. and Puleri, G. (1997), 'Stirrups effectiveness in reinforced concrete beams under flexure and shear', ACI Struct. J., 94(3), 227-238
- Shehata, E. (1999), 'Fibre-reinforced polymer (FRP) for shear reinforcement in concrete structures', Ph.D. Thesis, Department of Civil and Geological Engineering, University of Manitoba, Winnipeg, Canada, 382
- Technical Committee Document (ACI 440.1R-03), 'Guide for the design and construction of concrete reinforced with FRP bars', 440.1R-03, American Concrete Institute, Farmington Hills, Michigan, 2003, 42
- Technical Committee Document (ACI 440R-96), 'State-of-the-art report on fiber- reinforced plastic (FRP) reinforcement for concrete structures', American Concrete Institute, Farmington Hills, Michigan, USA, 1996, 68
- Tottori, S. and Wakui, H. (1993), 'Shear capacity of RC and PC beams using FRP reinforcement', American Concrete Institute, ACI SP-138, Nanni, A., and Dolan, C.W., editors, Farmington Hills, Michigan, USA, 615-631
- Vijay, P., Kumar, S. and Gangarao, H. (1996), 'Shear and ductility behaviour of concrete beams reinforced with GFRP bars', Proceedings of the Second International Conference on Advanced Composite Materials for Bridges and Structures, (ACMBS-11), El-Badry, M., editor, Montreal, Quebec, 217-226
- Yost, J. R., Gross, S. P. and Dinehart, D. W. (2001), 'Shear strength of normal-strength concrete beams reinforced with deformed GFRP bars', J. Compos. Constr., ASCE, 5(4), 268-275 https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(268)
- Zhao, W., Maruyama, K. and Suzuki, H. (1995), 'Shear behaviour of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement', Proceedings of the Second International RILEM Symposium (FRPRCS2), Non-Metallic (FRP) Reinforcement for Concrete Structures, Taerwe, L., editor, E & FN Spon, London, 352-359
- Zsutty, T. C. (1968), 'Beam shear strength predictions by analysis of existing data', ACI Struct. J., 65(11), 943-951
- Zsutty, T. C. (1971), 'Shear strength predictions for separate categories of simple beam tests', ACI Struct. J., 68(2), 138-143
Cited by
- Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm–Artificial Neural Network vol.10, pp.12, 2017, https://doi.org/10.3390/ma10020135
- Prediction of shear strength of FRP reinforced concrete beams using fuzzy inference system vol.41, pp.4, 2014, https://doi.org/10.1016/j.eswa.2013.07.045
- Knowledge-based prediction of shear strength of concrete beams without shear reinforcement vol.30, pp.6, 2008, https://doi.org/10.1016/j.engstruct.2007.10.008
- Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming vol.42, pp.6, 2011, https://doi.org/10.1016/j.advengsoft.2011.02.002
- Automated serviceability prediction of NSM strengthened structure using a fuzzy logic expert system vol.42, pp.1, 2015, https://doi.org/10.1016/j.eswa.2014.07.058
- Critical curtailment location of EBR FRP bonded RC beams using dimensional analysis and fuzzy logic expert system vol.166, 2017, https://doi.org/10.1016/j.compstruct.2017.01.025
- Performance of Hybrid Reinforced Concrete Beam Column Joint: A Critical Review vol.4, pp.4, 2016, https://doi.org/10.3390/fib4020013
- Machine learning-based prediction and performance study of transparent soil properties vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.289