• Title/Summary/Keyword: design alternative assessment

Search Result 136, Processing Time 0.029 seconds

Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building (군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가)

  • Byonghu Sohn;Kyung Joo Cho;Dong Woo Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

Validation of Crack-Tip Modeling and Calculation Procedure for Stress Intensity Factor for Iterative Finite Element Crack Growth Analysis (반복 유한요소 결함 성장 해석을 위한 결함 모델링 및 응력확대계수 계산 절차의 타당성 검증)

  • Gi-Bum Lee;Youn-Young Jang;Nam-Su Huh;Sunghoon Park;Noh-Hwan Park;Jun Park
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.36-48
    • /
    • 2021
  • As the material aging of nuclear power plants has been progressing in domestic and overseas, crack growth becomes one of the most important issues. In this respect, the crack growth assessment has been considered an essential part of structural integrity. The crack growth assessment for nuclear power plants has been generally performed based on ASME B&PV Code, Sec. XI but the idealization of crack shape and the conservative solutions of stress intensity factor (SIF) are used. Although finite element analysis (FEA) based on iterative crack growth analysis is considered as an alternative method to simulate crack growth, there are yet no guidelines to model the crack-tip spider-web mesh for such analysis. In this study, effects of various meshing factors on FE SIF calculation are systematically examined. Based on FEA results, proper criteria for spider-web mesh in crack-tip are suggested. The validation of SIF calculation method through mapping initial stress field is investigated to consider initial residual stress on crack growth. The iterative crack-tip modeling program to simulate crack growth is developed using the proposed criteria for spider-web mesh design. The SIF results from the developed program are validated by comparing with those from technical reports of other institutes.

Analysis of Interval-censored Survival Data from Crossover Trials with Proportional Hazards Model (교차계획 구간절단 생존자료의 비례위험모형을 이용한 분석)

  • Kim, Eun-Young;Song, Hae-Hiang
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.39-52
    • /
    • 2007
  • Crossover trials of new drugs in the treatment of angina pectoris, which frequently use treadmill exercise test for the assessment of its efficacy, produce censored survival times. In this paper we consider analysis approaches for censored survival times from crossover trials. Previously, a stratified Cox model for paired observation and nonparametric methods have been presented as possible analysis methods. On the other hand, the differences of two survival times would produce interval-censored survival times and we propose a Cox model for interval-censored data as n alternative analysis method. Example data is analyzed in order to compare these different methods.

Prediction of hysteretic energy demands in steel frames using vector-valued IMs

  • Bojorquez, Eden;Astorga, Laura;Reyes-Salazar, Alfredo;Teran-Gilmore, Amador;Velazquez, Juan;Bojorquez, Juan;Rivera, Luz
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.697-711
    • /
    • 2015
  • It is well known the importance of considering hysteretic energy demands for the seismic assessment and design of structures. In such a way that it is necessary to establish new parameters of the earthquake ground motion potential able to predict energy demands in structures. In this paper, several alternative vector-valued ground motion intensity measures (IMs) are used to estimate hysteretic energy demands in steel framed buildings under long duration narrow-band ground motions. The vectors are based on the spectral acceleration at first mode of the structure Sa($T_1$) as first component. As the second component, IMs related to peak, integral and spectral shape parameters are selected. The aim of the study is to provide new parameters or vector-valued ground motion intensities with the capacity of predicting energy demands in structures. It is concluded that spectral-shape-based vector-valued IMs have the best relation with hysteretic energy demands in steel frames subjected to narrow-band earthquake ground motions.

Performance Assessment of Hollow Precast Segmental Bridge Columns with Reinforcement Details for Material Quantity Reduction (조립식 물량저감 중공 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon;Park, Dong-Kyu;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • This study investigates the performance of hollow precast segmental bridge columns with reinforcement details for material quantity reduction. The proposed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. The precast segmental bridge columns provides an alternative to current cast-in-place systems. We tested a model of hollow precast segmental bridge columns under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for hollow precast segmental bridge column specimens investigated. As a result, proposed reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.

Life Cycle Cost Analysis of Primary Cooling System by Systematic Support Cost (각종지원금제도에 의한 냉열원시스템의 라이프 사이클 코스트 분석)

  • Kim, C.M.;Jung, S.S.;Choi, C.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2002
  • The purpose of this study is to analyze the life cycle cost of primary cooling system by systematic support cost. Life Cycle Cost(LCC) is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. In order to select economical primary cooling system in early heat source plan stages, the research investigates cost items and cost characteristics during project process phases such as planning/design, construction, maintenance /management, and demolition/sell phases. The study also analyze the life cycle cost by capacity leading to suggest the most economical primary cooling system by systematic support cost.

A Pilot study to estimate the efficacy of foot reflexology on insomnia in cancer patient (암환자의 불면에 대한 발반사요법의 효과 : 예비임상연구)

  • Jung, Hyun jung
    • Journal of Korean Traditional Oncology
    • /
    • v.26 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • Objective: Insomnia is a very common symptom of cancer and has a substantial effect on the patients' quality of life. This study aimed to identify the effects of foot reflexology on insomnia in cancer patients. Methods: The study employed a before-after test design on a single group of 13 cancer patients with insomnia, selected by convenience sampling in Daegu. The foot reflexology treatment comprised 30-min sessions twice a week over four weeks. Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) were measured at the baseline, at 2 and 4 weeks, and after 4 weeks post treatment completion. Brief Fatigue Inventory-Korean (BFI-K), Functional Assessment of Cancer Therapy-General (FACT-G), and Heart Rate Variability (HRV) were measured at baseline, post-treatment, and 4 weeks after completing treatments. Results: Thirteen patients (mean age 44.77 ± 6.70 years), with thyroid, breast or cervical cancer, were included in the study. Post-treatment, PSQI (from 12.33 ± 3.17 to 8.54 ± 3.43, p<0.001), ISI (from 20.33 ± 3.88 to 13.38 ± 4.23, p<0.001), FACT-G (from 49.6 ± 13.27 to 61.35 ± 14.45, p<0.001), and BFI (from 6.46 ± 0.91 to 5.00 ± 2.02, p<0.001) scores improved significantly over those at the baseline. Conclusion: Foot reflexology can be a good alternative treatment to improve insomnia, fatigue, and quality of life in cancer patients

An Improved Monte-Carlo Simulation Method for Typhoon Risk Assessment in Korea (개선(改善)된 Monte-Carlo 시뮬레이션 방법(方法)에 의한 한국(韓國)의 태풍위험도(颱風危險度) 분석(分析))

  • Cho, Hyo Nam;Chang, Dong Il;Cha, Cheol Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.159-165
    • /
    • 1987
  • This study proposes an operational method of typhoon risk assessments in Korea, using Statistical analysis and probabilistic description of typhoon at a site. Two alternative simulation and fitting methods are discussed to predict the probabilistic typhoon wind speeds by indirect methods. A Commonly used indirect method is Russell's procedure, which generates about 1,000 Simulation data for typhoon winds, statistically evaluate the base-line distribution, and then fits the results to the Weibull distribution based on probabilistic description of climatological Characteristics and Wind field model of typhoon at a site. However, an alternative procedure proposed in this Paper simulates extreme typhoon wind data of about 150~200 years and directly fits the generated data to the Weibull distribution. The computational results show that the proposed simulation method is more economical and reasonable for typhoon risk-assessment based on the indirect method. And using the proposed indirect method, the probabilistic design wind speed for transmission towers in typhoon-prone region along the South-Western coast is investigated.

  • PDF

Alternative Evaluation Model in the Development of Environment-friendly Residential Land (택지개발사업의 환경친화적 대안평가모형 구축)

  • Jung, In-Su;Lee, Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.156-166
    • /
    • 2009
  • Residential land development projects are tending upwards recently. However, an indiscreet residential land development has tended to damage environment by destroying existing green lands and trees of target lands and generating many cut slopes with transformation of its topography. There are Prior Environmental Review(PER) for district designation and Environmental Impact Assessment(EIA) before approval on development plans. PER is implemented after developing a residential land development plan and EIA is implemented after completing a detail design. As the result, many of residential land development projects are passive to reduce potential environmental problems on the designated sites. Object of this study is to construct an evaluation system on alternatives in the early step of site designation for implementing residential land development projects with environment-friendly and sustainable way. For this, alternative evaluation model is constructed by using Fuzzy Inference and Analytic Hierarchy Process(AHP) method based on Environmental Evaluation Factors of residential land development project, which are proposed in the precedent research. If a decision maker evaluates environment damage by ten-point method, the point is transformed Environmental Performance(EP) by Fuzzy Inference, and then, applying weight that is already calculated by AHP method, Total Environmental Performance(TEP) is calculated. After all, an alternative with the highest TEP is selected as the best one. Using this evaluation system, more than two alternatives of residential land development project site, which can hold location appropriateness in the early under undecided land use plan, can be evaluated quantitatively. As environmental damages, which can be generated by implementing a residential land development project, can be detected in the early step, environmental damages can be removed or reduced at the source.

Ultimate Strength Assessment of Bollard and Its Foundation Considering Production Costs (생산성을 고려한 볼라드 및 볼라드 지지 구조의 최종강도 평가)

  • Oh, Chang-Min;Choung, Joon-Mo;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.604-610
    • /
    • 2006
  • Common structural rules of JBP(Joint Bulker Project) and JTP(Joint Tanker Project), which will come into effect in 2006, invoke the necessity of the ultimate limit state(ULS) design for ship structures. Even though the many applications of ULS analysis have been performed for ship structures, there have few studies carried out for deck machineries and their supporting structures. Recently four major Korean shipbuilders(DSME, HHI, HHIC, SHI) jointly developed and proposed a new design standards for mooring fittings and also proposed the SWL (Safety Working Load) obtained based on the first yield criterion. In this study, various ultimate strength analyses were performed for bollards and their foundation structures whose yield strengths were quantified by the research consortium. Prior to performing the ultimate strength analyses, the numerical calculation method was substantiated with the test results provided in the joint work report. Based upon the results of this study, it can be concluded that the reinforcements to increase the yield strength are not always resulted in the enhancement of the ultimate strength. Furthermore, the additional production costs for the reinforcements can not be rewarded by the ultimate strength. Therefore, another alternative arrangements should be developed in the view point of ultimate strength.