• Title/Summary/Keyword: depth sensing camera

Search Result 36, Processing Time 0.028 seconds

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Depth Resolution Analysis of Axially Distributed Stereo Camera Systems under Fixed Constrained Resources

  • Cho, Myungjin;Shin, Donghak
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.500-505
    • /
    • 2013
  • In this paper, we propose a novel framework to evaluate the depth resolution of axially distributed stereo sensing (ADSS) under fixed resource constraints. The proposed framework can evaluate the performance of ADSS systems based on various sensing parameters such as the number of cameras, the number of total pixels, pixel size and so on. The Monte Carlo simulations for the proposed framework are performed and the evaluation results are presented.

3D Environment Perception using Stereo Infrared Light Sources and a Camera (스테레오 적외선 조명 및 단일카메라를 이용한 3차원 환경인지)

  • Lee, Soo-Yong;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.519-524
    • /
    • 2009
  • This paper describes a new sensor system for 3D environment perception using stereo structured infrared light sources and a camera. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and two projected infrared light sources are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Two successive captures of the image with left and right infrared light projection provide several benefits, which include wider area of depth measurement, higher spatial resolution and the visibility perception.

Educational Indoor Autonomous Mobile Robot System Using a LiDAR and a RGB-D Camera (라이다와 RGB-D 카메라를 이용하는 교육용 실내 자율 주행 로봇 시스템)

  • Lee, Soo-Young;Kim, Jae-Young;Cho, Se-Hyoung;Shin, Chang-yong
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.44-52
    • /
    • 2019
  • We implement an educational indoor autonomous mobile robot system that integrates LiDAR sensing information with RGB-D camera image information and exploits the integrated information. This system uses the existing sensing method employing a LiDAR with a small number of scan channels to acquire LiDAR sensing information. To remedy the weakness of the existing LiDAR sensing method, we propose the 3D structure recognition technique using depth images from a RGB-D camera and the deep learning based object recognition algorithm and apply the proposed technique to the system.

Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network (SPAD과 CNN의 특성을 반영한 ToF 센서와 스테레오 카메라 융합 시스템)

  • Kim, Dong Yeop;Lee, Jae Min;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.230-236
    • /
    • 2018
  • 3D depth perception has played an important role in robotics, and many sensory methods have also proposed for it. As a photodetector for 3D sensing, single photon avalanche diode (SPAD) is suggested due to sensitivity and accuracy. We have researched for applying a SPAD chip in our fusion system of time-of-fight (ToF) sensor and stereo camera. Our goal is to upsample of SPAD resolution using RGB stereo camera. Currently, we have 64 x 32 resolution SPAD ToF Sensor, even though there are higher resolution depth sensors such as Kinect V2 and Cube-Eye. This may be a weak point of our system, however we exploit this gap using a transition of idea. A convolution neural network (CNN) is designed to upsample our low resolution depth map using the data of the higher resolution depth as label data. Then, the upsampled depth data using CNN and stereo camera depth data are fused using semi-global matching (SGM) algorithm. We proposed simplified fusion method created for the embedded system.

3D Range Measurement using Infrared Light and a Camera (적외선 조명 및 단일카메라를 이용한 입체거리 센서의 개발)

  • Kim, In-Cheol;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1005-1013
    • /
    • 2008
  • This paper describes a new sensor system for 3D range measurement using the structured infrared light. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and the projected infrared light are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Identification of the cells from the pattern is the key issue in the proposed method. Several methods of correctly identifying the cells are discussed and verified with experiments.

RGB-Depth Camera for Dynamic Measurement of Liquid Sloshing (RGB-Depth 카메라를 활용한 유체 표면의 거동 계측분석)

  • Kim, Junhee;Yoo, Sae-Woung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, a low-cost dynamic measurement system using the RGB-depth camera, Microsoft $Kinect^{(R)}$ v2, is proposed for measuring time-varying free surface motion of liquid dampers used in building vibration mitigation. Various experimental studies are conducted consecutively: performance evaluation and validation of the $Kinect^{(R)}$ v2, real-time monitoring using the $Kinect^{(R)}$ v2 SDK(software development kits), point cloud acquisition of liquid free surface in the 3D space, comparison with the existing video sensing technology. Utilizing the proposed $Kinect^{(R)}$ v2-based measurement system in this study, dynamic behavior of liquid in a laboratory-scaled small tank under a wide frequency range of input excitation is experimentally analyzed.

Direct Depth and Color-based Environment Modeling and Mobile Robot Navigation (스테레오 비전 센서의 깊이 및 색상 정보를 이용한 환경 모델링 기반의 이동로봇 주행기술)

  • Park, Soon-Yong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.194-202
    • /
    • 2008
  • This paper describes a new method for indoor environment mapping and localization with stereo camera. For environmental modeling, we directly use the depth and color information in image pixels as visual features. Furthermore, only the depth and color information at horizontal centerline in image is used, where optical axis passes through. The usefulness of this method is that we can easily build a measure between modeling and sensing data only on the horizontal centerline. That is because vertical working volume between model and sensing data can be changed according to robot motion. Therefore, we can build a map about indoor environment as compact and efficient representation. Also, based on such nodes and sensing data, we suggest a method for estimating mobile robot positioning with random sampling stochastic algorithm. With basic real experiments, we show that the proposed method can be an effective visual navigation algorithm.

  • PDF

Depth Extraction of Partially Occluded 3D Objects Using Axially Distributed Stereo Image Sensing

  • Lee, Min-Chul;Inoue, Kotaro;Konishi, Naoki;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.275-279
    • /
    • 2015
  • There are several methods to record three dimensional (3D) information of objects such as lens array based integral imaging, synthetic aperture integral imaging (SAII), computer synthesized integral imaging (CSII), axially distributed image sensing (ADS), and axially distributed stereo image sensing (ADSS). ADSS method is capable of recording partially occluded 3D objects and reconstructing high-resolution slice plane images. In this paper, we present a computational method for depth extraction of partially occluded 3D objects using ADSS. In the proposed method, the high resolution elemental stereo image pairs are recorded by simply moving the stereo camera along the optical axis and the recorded elemental image pairs are used to reconstruct 3D slice images using the computational reconstruction algorithm. To extract depth information of partially occluded 3D object, we utilize the edge enhancement and simple block matching algorithm between two reconstructed slice image pair. To demonstrate the proposed method, we carry out the preliminary experiments and the results are presented.