• Title/Summary/Keyword: depth effect

Search Result 4,318, Processing Time 0.033 seconds

The Dose Distribution of Arc therapy for High Energy Electron (고에너지 전자선 진자조사에 의한 선량분포)

  • Chu, S.S.;Kim, G.E.;Suh, C.O.;Park, C.Y.
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF

Effect on Maintenance of Vertical Profile of Stream for Triangle-Type Labyrinth Weir (삼각형 래버린스 위어의 수심유지 효과)

  • Lee, Seung-Oh;Kim, Young-Ho;Im, Jang-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.107-115
    • /
    • 2009
  • The labyrinth weir can be applied to increase the overflow rate, maintain constant water depth and improve water quality. This weir can be defined that the plane shape of overflow part is not straight line and is a kind of weir having overflow length increased by changing its plane shape. There are relatively few studies related to effect of maintaining the water depth which has been used to consider for various functions as hydraulic facilities and design conditions of labyrinth weirs. Thus, it is needed to conduct studies related to the maintenance of water depth by the labyrinth weir. This study was to provide fundamental data which may become a facilitator for more accurate and proper design of hydraulic facilities related to the maintenance of water depth. The ranges of constant water depth ($H_t/P=0.08\sim0.27$) were provided for the triangle type labyrinth weir, and the effect of maintaining water depth was analyzed using hydraulic laboratory experiments and 3D-numerical simulations(Flow-3D).

Iontophoresis Enhances Transdermal Delivery of Methylene Blue in Rat Skin (I): The Effect of Current Application Duration

  • Lee, Jae-Hyoung;Choi, Eun-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.77-84
    • /
    • 2011
  • Purpose: The objectives of this study were to determine the enhancing effect of iontophoresis method as it transdermally deliver methylene blue (MB) using visual examination, in terms of penetration depth and tissue distribution in the skin, and to determine the effect of application duration on the efficacy of iontophoresis. Methods: Twenty-four male Sprague-Dawley rats were randomly divided into 5-, 10-, 20-, and 40-minute groups. These rats were exposed to either topical or anodic iontophoresis of 1% MB using a direct current of $0.5mA/cm^2$ for 5, 10, 20, and 40 minutes. Using cryosections of rat tissues, the penetration depth of MB was measured using light microscopy. Results: Significant differences in the penetration depth (F=54.20, p<0.001) were detected among the four groups. Post hoc comparisons of the penetration depth of MB data pooled across groups showed no significant difference between all topical application groups and 5-minute iontophoresis group, but did reveal a significant difference in the penetration depth between all topical application groups and 5-minute iontophoresis group versus 10-minute group, between the 10-minute and 20-minute group, and between the 20-minute and 40-minute iontophoresis group (p<0.05). Conclusion: The results demonstrate that iontophoresis enhances transdermal delivery of MB across stratum corneum of skin barrier by visual examination. Furthermore, the penetration depth of iontophoretic transdermal delivery of MB was dependent on the application duration. The duration of iontophoresis is one of the important factor in the efficacy of iontophoresis application.

Effects of Depth Map Quantization for Computer-Generated Multiview Images using Depth Image-Based Rendering

  • Kim, Min-Young;Cho, Yong-Joo;Choo, Hyon-Gon;Kim, Jin-Woong;Park, Kyoung-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2175-2190
    • /
    • 2011
  • This paper presents the effects of depth map quantization for multiview intermediate image generation using depth image-based rendering (DIBR). DIBR synthesizes multiple virtual views of a 3D scene from a 2D image and its associated depth map. However, it needs precise depth information in order to generate reliable and accurate intermediate view images for use in multiview 3D display systems. Previous work has extensively studied the pre-processing of the depth map, but little is known about depth map quantization. In this paper, we conduct an experiment to estimate the depth map quantization that affords acceptable image quality to generate DIBR-based multiview intermediate images. The experiment uses computer-generated 3D scenes, in which the multiview images captured directly from the scene are compared to the multiview intermediate images constructed by DIBR with a number of quantized depth maps. The results showed that there was no significant effect on depth map quantization from 16-bit to 7-bit (and more specifically 96-scale) on DIBR. Hence, a depth map above 7-bit is needed to maintain sufficient image quality for a DIBR-based multiview 3D system.

Numerical Study on the Prediction of the Depth of Improvement and Vibration Effect in Dynamic Compaction Method (동다짐 공법의 개량심도 및 진동영향 예측을 위한 수치해석적 연구)

  • Lee, Jong-Hwi;Lim, Dae-Sung;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.59-66
    • /
    • 2010
  • In this study, an applicability by using the FEM was investigated for the prediction of both the depth of improvement and the vibration effect when dynamic compaction method is applied. The region was modelled by the field conditions applying dynamic compaction method and the rigid body force was applied to the dynamic load model. Predicted depth of improvement calculated by the vertical peak particle acceleration was compared and analyzed with an existing empirical equation, and the effect of groundwave by deducing the peak particle velocity from vibration sources was compared and analyzed with the results of another existing empirical equation. The results showed that the prediction of the depth of improvement has similar tendency to practice, and the vibration effect has some differences in a particular section from existing equation, but it could predict the safety distance to some degree. The analyzed results are expected to be basic data for the development of reliability of dynamic compaction design with existing empirical method.

Effect of Low Temperature Plasma Pretreatment on the Color Depth of Wool Fabrics (양모직물의 염착농도에 미치는 저온플라즈마 처리의 영향)

  • 배소영;이문철
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.76-83
    • /
    • 1992
  • Wool tropical and nylon taffeta were treated with low temperature plasma of $O_2$, $N_2$, NH$_3$, CF$_4$ and CH$_4$ for the intervals of 10 to 300 sec, and then dyed with leveling and milling type acid dyes in presence or absence of buffer solution. From the color depth of dyed fabrics, effect of plasma gases, treated time, dyeing time and temperature on dyeing property was studied. The results of the experiment can be summarized as follows: 1) The plasma treatments except methane gas increased the color depth of dyed wool fabrics, but not that of dyed nylon fabrics regardless of the plasma gases used. 2) The color depth of wool fabrics dyed in the dye bath without buffer solution was increased by the low temperature plasma, especially increased much more by CF$_4$ plasma treatment. It is found that with the identification of F- ion in the residual dye bath the hydrogen fluoride gas was adsorbed on wool fabrics in the plasma treatment. 3) The color depth of wool fabrics was increased with the time of $O_2$ and CF$_4$ plasma treatments. 4) In both cases of the leveling and milling type acid dyes, the rate of dyeing was increased in the low temperature plasma treatments, and it is found that the leveling type acid dye increased the color depth at relatively low temperature below 4$0^{\circ}C$, compared with the milling type acid dye.

  • PDF

SIMS glancing anlge을 적용한 tunnel oxide 내 Nitorgen 깊이 분해능 향상 연구

  • Lee, Jong-Pil;Choe, Geun-Yeong;Kim, Gyeong-Won;Kim, Ho-Jeong;Han, O-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.41-41
    • /
    • 2011
  • Flash memory에서 tunnel oxide film은 electron tunnelling 현상을 이용하여 gate에 전하를 전달하는 통로로 사용되고 있다. 특히, tunnel oxide film 내부의 charge trap 현상과 불순물이 소자 특성에 직접적인 영향을 주고 있어, 후속 N2O/NO 열처리 공정에서 SiO2/Si 계면에 nitrogen을 주입하여 tunnel oxide film 특성을 개선하고 있다. 따라서 N2O/NO 열처리 공정 최적화를 위해서는 tunnel oxide film 내 N 농도와 분포에 대한 정확한 평가가 필수적이다[1]. 본 실험에서는 low energy magnetic SIMS를 이용하여 N2O로 열처리된 tunnel oxide film 내의 N농도를 보다 정확하게 평가하고자 하였다. 사용된 시료는 Si substrate에 oxidation 이후 N2O 열처리를 진행하여 tunnel oxide를 형성시켰으며, 분석 impact energy는 surface effect최소화와 최상의 depth resolution 확보를 위해 250eV를 사용하였으며, matrix effect와 mass interference를 방지하기 위해 MCs+ cluster mode[2]로 CsN signal를 검출하였다. 실험 결과, 특정 primary beam 입사각도에서 nitrogen depth resolution 저하 현상이 발생하였고, SIMS crater 표면이 매우 거칠게 나타났다. 이에, Depth resolution 저하 현상을 개선하기 위해 극한의 glancing 입사각 조건으로 secondary extraction voltage 변화를 통해 depth resolution이 개선되는 최적의 impact energy와 primary beam 입사각 조건을 확보하였다. 그 결과 nitrogen의 depth resolution은 1.6nm의 depth resolution을 확보하였으며, 보다 정확한 N 농도와 분포를 평가할 수 있게 되었다.

  • PDF

An Analytical Model for Predicting Heat Transport with a Sharp Depth Change in Cross-Flow Direction (흐름에 수직한 방향으로 급격한 수심 변화가 존재하는 해역에서의 열오염 이동 예측 해석해 모형)

  • Lee, Ho-Jin;Kim, Young-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.62-72
    • /
    • 2008
  • In this study, an analytical model has been developed to predict the build-up of heat field due to a point heat source in the presence of sharp cross-flow depth change. The model has been applied to investigate the effect of the depth change and flow pattern on the heat field. Model results show that, when there is a sharp depth change in cross-flow direction, the heat transport across the boundary of the depth change is enhanced or diminished according to the increasing or decreasing of the horizontal diffusion flux. Including residual components as well as tidal currents give rise to reduce the effect of the horizontal diffusion on the heat transport because of increasing the advection of heat.

Insertion Loss Analysis According to the Structural Variant of Interposer (인터포저의 디자인 변화에 따른 삽입손실 해석)

  • Park, Jung-Rae;Jung, Cheong-Ha;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.97-101
    • /
    • 2021
  • In this study, Insertion loss according to the structural variant of interposer to Through Silicon Via (TSV) and Redistributed Layer (RDL) was studied through design of experiment. 3-Factors was considered as a variant, TSV depth, TSV diameter, RDL width with factor arrangement method and the response surface method from 400 MHz to 20 GHz. As a result, it was confirmed that as the frequency increased, the effect of RDL width was decreased and the effect of TSV depth and TSV diameter was increased. Also within the analysis range, to increasing RDL width, decreasing TSV depth, and fixing TSV diameter about 10.7 ㎛ was observed optimal result of Insertion loss.

Effect of geometry of underground structure and electrode on electrical resistance measurement: A numerical study

  • Tae-Young Kim;Hee-Hwan Ryu;Meiyan Kang;Suyoung Choi;Song-Hun Chong
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • Recently, electrical resistivity surveys have been used to obtain information related to underground structures including burial structure type and depth. However, various field conditions hinder understanding measured electrical resistance, and thus there is a need to understand how various geometries affect electrical resistance. This study explores the effect of geometric parameters of a structure and electrodes on electrical resistance in the framework of the finite element method. First, an electrical resistance module is developed using the generalized mesh modeling technique, and the accuracy of the module is verified by comparing the results with the analytical solution for a cylindrical electrode with conical tip. Then, 387 cases of numerical analysis including geometric parameters of a buried structure and electrodes are conducted to quantitatively estimate the detection depth under a steady-state current condition. The results show that electrical resistance is increased as (1) shallower burial depth of structure, (2) closer distance between ground electrode and structure, (3) longer horizontal electrode distance. In addition, the maximum detection depth corresponding to converged electrical resistance is deeper as (4) closer distance between ground electrode and structure, (5) shorter horizontal electrode distance. The distribution of the electric potential around the electrodes and underground structure is analyzed to provide a better understanding of the measured electrical resistance. As engineering purpose, the empirical equation is proposed to calculate maximum detection depth as first approximation.