DOI QR코드

DOI QR Code

Insertion Loss Analysis According to the Structural Variant of Interposer

인터포저의 디자인 변화에 따른 삽입손실 해석

  • Park, Jung-Rae (Electronic Packaging Research Center, Kangnam University) ;
  • Jung, Cheong-Ha (Electronic Packaging Research Center, Kangnam University) ;
  • Kim, Gu-Sung (Electronic Packaging Research Center, Kangnam University)
  • 박정래 (강남대학교 전자패키지연구소) ;
  • 정청하 (강남대학교 전자패키지연구소) ;
  • 김구성 (강남대학교 전자패키지연구소)
  • Received : 2021.12.13
  • Accepted : 2021.12.29
  • Published : 2021.12.30

Abstract

In this study, Insertion loss according to the structural variant of interposer to Through Silicon Via (TSV) and Redistributed Layer (RDL) was studied through design of experiment. 3-Factors was considered as a variant, TSV depth, TSV diameter, RDL width with factor arrangement method and the response surface method from 400 MHz to 20 GHz. As a result, it was confirmed that as the frequency increased, the effect of RDL width was decreased and the effect of TSV depth and TSV diameter was increased. Also within the analysis range, to increasing RDL width, decreasing TSV depth, and fixing TSV diameter about 10.7 ㎛ was observed optimal result of Insertion loss.

본 연구에서는 실험 설계법을 통해 인터포저에서 Through Silicon Via (TSV) 및 Redistributed Layer (RDL)의 구조적 변형에 따른 삽입 손실 특성 변화를 확인하였다. 이때 3-요인으로 TSV depth, TSV diameter, RDL width를 선정하여, 구조적 변형을 일으켰을 때 400 MHz~20 GHz에서의 삽입 손실을 EM (Electromagnetic) tool Ansys HFSS(High Frequency Simulation Software)를 통해 확인하였다. 반응 표면법을 고려하였다. 그 결과 주파수가 높아질수록 RDL width의 영향이 감소하고 TSV depth와 TSV diameter의 영향이 증가하는 것을 확인했다. 또한 분석 범위 내에서 RDL width를 증가시키면서 TSV depth를 감소시키고 TSV diameter를 약 10.7 ㎛ 고정하는 것이 삽입 손실을 가장 최적화 시키는 결과가 관찰되었다.

Keywords

Acknowledgement

이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('20010170').

References

  1. H. Jun et al., "HBM (High Band wid th Memory) DRAM Technology and Architecture," 2017 IEEE International Memory Workshop (IMW), 1-4 (2017).
  2. P. Holzinger, D. Reiser, T. Hahn and M. Reichenbach, "Fast HBM Access with FPGAs: Analysis, Architectures, and Applications," 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 152-159 (2021)
  3. JEDEC Standard High Bandwidth Memory (HBM) DRAM Specification JESD235 2013.
  4. V. S. Rao et al., "TSV interposer fabrication for 3D IC packaging," 2009 11th Electronics Packaging Technology Conference, 431-437 (2019)
  5. J. H. Lau, "Overview and outlook of through-silicon via (TSV) and 3D integrations", Microelectron. Int., 28(2), 8-22 (2011) https://doi.org/10.1108/13565361111127304
  6. T. S. Yoon, T. S. Kim, "Thermo-Mechanical Reliability of TSV based 3D-IC", J. Microelectron. Packag. Soc., 24(1), 35-43 (2017) https://doi.org/10.6117/KMEPS.2017.24.1.035
  7. D. U. Lee et al., "22.3 A 128Gb 8-High 512GB/s HBM2E DRAM with a Pseudo Quarter Bank Structure, Power Dispersion and an Instruction-Based At-Speed PMBIST," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 334-336 (2020)
  8. C. Oh et al., "22.1 A 1.1V 16GB 640GB/s HBM2E DRAM with a Data-Bus Window-Extension Technique and a Synergetic On-Die ECC Scheme," 2020 IEEE International Solid-State Circuits Conference - (ISSCC), 330-332 (2020)
  9. K. Hara, N. Hashimoto, H. Ito, et al. Active Si Interposer : Combination of Through-Si Vias and Redistribution. MRS Online Proceedings Library 970, 503 (2006).
  10. H. J. Lau, 3D IC Integration and Packaging, pp. 11, McGraw-Hill Education (2016).