Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A6A1A11055660). This work was also supported by the Technology Innovation Program ('20013621', Center for Super Critical Material Industrial Technology) funded by the Ministry of Trade, Industry & Energy (MOTIE, South Korea).
References
- H. J. Goldsmid, "Introduction to thermoelectricity", Vol. 121, p 46, Springer-Verlag, Berlin Germany (2010).
- G. J. Snyder and A. H. Snyder, "Figure of merit ZT of a thermoelectric device defined from materials properties", Energy Environ. Sci., 10, 2280 (2017). https://doi.org/10.1039/c7ee02007d
- G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nat. Mater., 7(2), 105 (2008). https://doi.org/10.1038/nmat2090
- H. Mun, K. H. Lee, S. J. Kim, J. Y. Kim, J. H. Lee, J. H. Lim, H. J. Park, J. W. Roh and S. W. Kim, "Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3", Mater., 8(3), 959-965 (2015). https://doi.org/10.3390/ma8030959
- A. F. May, G. J. Snyder, "Introduction to modeling thermoelectric transport at high Temperatures", Materials, Preparation, and Characterization in Thermoelectrics, p 1-18, CRC Press, USA(2012).
- M. Kim, S. I. Kim, S. W. Kim, H. S. Kim and K. H. Lee, "Weighted Mobility Ratio Engineering for High-Performance Bi-Te-Based Thermoelectric Materials via Suppression of Minority Carrier Transport", Adv. Mater., 33, 2005931 (2021). https://doi.org/10.1002/adma.202005931
- B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, "High-Thermoelectric Performance of Nano structured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
- S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, "Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics", Science, 348, 109 (2015). https://doi.org/10.1126/science.aaa4166
- K. Kim, G. Kim, H. Lee, K. H. Lee, W. Lee, "Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation", Scr. Mater., 145, 41 (2018). https://doi.org/10.1016/j.scriptamat.2017.10.009
- Y. Liu, Y. Zhang, S. Ortega, M. Ibanez, K. H. Lim, A. Grau-Carbonell, S. Marti-Sanchez, K. M. Ng, J. Arbiol, M. V. Kovalenko, D. Cadavid, A. Cabot, "Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2-xTe3 nanocrystal building blocks", Nano Lett., 18, 2557 (2018). https://doi.org/10.1021/acs.nanolett.8b00263
- G. Yang, R. Niu, L. Sang, X. Liao, D. R. G. Mitchell, N. Ye, J. Pei, J. F. Li, X. Wang, "Ultra-High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with Nano-Defect Architectures", Adv. Energy Mater., 10, 2000757 (2020). https://doi.org/10.1002/aenm.202000757