DOI QR코드

DOI QR Code

Control of Weighted Mobility Ratio to Enhance the Performance of Bi-Te-based Thermoelectric Materials

Bi-Te계 열전소재 성능 증대를 위한 Weighted Mobility Ratio 제어

  • Kim, Min Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Hyun-Sik (Department of Materials Science and Engineering, Hongik University) ;
  • Lee, Kyu Hyoung (Department of Materials Science and Engineering, Yonsei University)
  • 김민영 (연세대학교 신소재공학과) ;
  • 김현식 (홍익대학교 신소재공학과) ;
  • 이규형 (연세대학교 신소재공학과)
  • Received : 2021.12.14
  • Accepted : 2021.12.17
  • Published : 2021.12.30

Abstract

Temperature dependences of electronic and thermal transport properties of narrow band gap thermoelectric materials are dependent on the transport behavior of minority carriers as well as majority carriers. Thus, weighted mobility ratio, which is defined the ratio of weighted mobility for majority carriers to that for minority carriers, must be one of the important parameters to enhance the performance of thermoelectric materials. Herein, we provided a practical guide for the development of high-performance Bi-Te-based thermoelectric materials based on the weighted mobility ratio control by considering theoretical backgrounds related to the electronic transport phenomena in semiconductors.

좁은 밴드갭 반도체 특성을 나타내는 열전소재의 온도에 따른 전자전도 및 열전도 특성은 다수 캐리어 뿐 아니라 소수 캐리어의 전도 거동에 의해 결정된다. 따라서 소수 캐리어의 weighted mobility에 대한 다수 캐리어의 weighted mobility의 비율로 정의되는 weighted mobility ratio는 열전소재의 성능 증대에 매우 중요한 인자이다. 본 논문에서는 열전소재의 전자전도 현상에 대한 이론적인 고찰을 바탕으로 weighted mobility ratio 제어가 열전소재의 성능에 미치는 영향을 규명하여 고성능 Bi-Te계 열전소재 개발에 효과적으로 활용할 수 있는 소재 설계 지침을 제공하고자 한다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A6A1A11055660). This work was also supported by the Technology Innovation Program ('20013621', Center for Super Critical Material Industrial Technology) funded by the Ministry of Trade, Industry & Energy (MOTIE, South Korea).

References

  1. H. J. Goldsmid, "Introduction to thermoelectricity", Vol. 121, p 46, Springer-Verlag, Berlin Germany (2010).
  2. G. J. Snyder and A. H. Snyder, "Figure of merit ZT of a thermoelectric device defined from materials properties", Energy Environ. Sci., 10, 2280 (2017). https://doi.org/10.1039/c7ee02007d
  3. G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nat. Mater., 7(2), 105 (2008). https://doi.org/10.1038/nmat2090
  4. H. Mun, K. H. Lee, S. J. Kim, J. Y. Kim, J. H. Lee, J. H. Lim, H. J. Park, J. W. Roh and S. W. Kim, "Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3", Mater., 8(3), 959-965 (2015). https://doi.org/10.3390/ma8030959
  5. A. F. May, G. J. Snyder, "Introduction to modeling thermoelectric transport at high Temperatures", Materials, Preparation, and Characterization in Thermoelectrics, p 1-18, CRC Press, USA(2012).
  6. M. Kim, S. I. Kim, S. W. Kim, H. S. Kim and K. H. Lee, "Weighted Mobility Ratio Engineering for High-Performance Bi-Te-Based Thermoelectric Materials via Suppression of Minority Carrier Transport", Adv. Mater., 33, 2005931 (2021). https://doi.org/10.1002/adma.202005931
  7. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, "High-Thermoelectric Performance of Nano structured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  8. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, "Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics", Science, 348, 109 (2015). https://doi.org/10.1126/science.aaa4166
  9. K. Kim, G. Kim, H. Lee, K. H. Lee, W. Lee, "Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation", Scr. Mater., 145, 41 (2018). https://doi.org/10.1016/j.scriptamat.2017.10.009
  10. Y. Liu, Y. Zhang, S. Ortega, M. Ibanez, K. H. Lim, A. Grau-Carbonell, S. Marti-Sanchez, K. M. Ng, J. Arbiol, M. V. Kovalenko, D. Cadavid, A. Cabot, "Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2-xTe3 nanocrystal building blocks", Nano Lett., 18, 2557 (2018). https://doi.org/10.1021/acs.nanolett.8b00263
  11. G. Yang, R. Niu, L. Sang, X. Liao, D. R. G. Mitchell, N. Ye, J. Pei, J. F. Li, X. Wang, "Ultra-High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with Nano-Defect Architectures", Adv. Energy Mater., 10, 2000757 (2020). https://doi.org/10.1002/aenm.202000757