• Title/Summary/Keyword: deposition thickness

Search Result 1,560, Processing Time 0.029 seconds

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

A study on an experimental basis a special quality character of thin film use in order to TiN a conditioned immersion (TiN증착 조건에 따른 박막의 특성에 대한 실험적 연구)

  • Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4711-4717
    • /
    • 2011
  • Formation of TiN films by PVD method and the DC and RF sputtering deposition method can be applied, the injected gas to generate plasma ionization rate of the film forming speed is slow away, anything to increase the adhesion between films limitations have. To improve this, to investigate the deposition and ion beam evaporation simultaneously IBAD(Ion beam assisted deposition) when used, Ion beam surface coating material prior to the survey because the surface cleaning effect of a large, high film adhesion can be obtained. In addition, the high vacuum and low temperature, high purity thin film of uniform thickness in the benefits is.

The Study on the Uniformity, Deposition Rate of PECVD SiO2 Deposition

  • Eun Hyeong Kim;Yoon Hee Choi;Hyeon Ji Jeon;Woo Hyeok Jang;Garam Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.87-91
    • /
    • 2024
  • SiO2, renowned for its excellent insulating properties, has been used in the semiconductor industry as a valuable dielectric material. High-quality SiO2 films find applications in gate spacers and interlayer insulation gap-fill oxides, among other uses. One of the prevalent methods for depositing these SiO2 films is plasma enhanced chemical vapor deposition (PECVD) favored for its relatively low processing costs and ability to operate at low temperatures. However, compared to the increasingly utilized atomic layer deposition (ALD) method, PECVD exhibits inferior film characteristics such as uniformity. This study aims to produce SiO2 films with uniformity as close as possible to those achieved by ALD through the adjustment of PECVD process parameters. we conducted a total of nine PECVD processes, varying the process time and gas flow rates, which were identified as the most influential factors on the PECVD process. Furthermore, ellipsometry analysis was employed to examine the uniformity variations of each process. The experimental results enabled us to elucidate the relationship between uniformity and deposition rate, as well as the impact of gas flow rate and deposition time on the process outcomes. Additionally, thickness measurements obtained through ellipsometer facilitate the identification of optimal process parameters for PECVD.

  • PDF

Quantum Mechanical Simulation for the Analysis, Optimization and Accelerated Development of Precursors and Processes for Atomic Layer Deposition (ALD)

  • Mustard, Thomas Jeffrey Lomax;Kwak, Hyunwook Shaun;Goldberg, Alexander;Gavartin, Jacob;Morisato, Tsuguo;Yoshidome, Daisuke;Halls, Mathew David
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.317-324
    • /
    • 2016
  • Continued miniaturization and increasingly exact requirements for thin film deposition in the semiconductor industry is driving the search for new effective, efficient, selective precursors and processes. The requirements of defect-free, conformal films, and precise thickness control have focused attention on atomic layer deposition (ALD). ALD precursors so far have been developed through a trial-and-error experimental approach, leveraging the expertise and tribal knowledge of individual research groups. Precursors can show significant variation in performance, depending on specific choice of co-reactant, deposition stage, and processing conditions. The chemical design space for reactive thin film precursors is enormous and there is urgent need for the development of computational approaches to help identify new ligand-metal architectures and functional co-reactants that deliver the required surface activity for next-generation thin-film deposition processes. In this paper we discuss quantum mechanical simulation (e.g. density functional theory, DFT) applied to ALD precursor reactivity and state-of-the-art automated screening approaches to assist experimental efforts leading toward optimized precursors for next-generation ALD processes.

Low Temperature Polycrystalline Silicon Deposition by Atmospheric Pressure Plasma Enhanced CVD Using Metal Foam Showerhead (다공성 금속 샤워헤드가 적용된 상압플라즈마 화학기상증착법을 이용한 저온 다결정 실리콘 증착 공정)

  • Park, Hyeong-Gyu;Song, Chang-Hoon;Oh, Hoon-Jung;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.344-349
    • /
    • 2020
  • Modern thin film deposition processes require high deposition rates, low costs, and high-quality films. Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) meets these requirements. AP-PECVD causes little damage on thin film deposition surfaces compared to conventional PECVD. Moreover, a higher deposition rate is expected due to the surface heating effect of atomic hydrogens in AP-PECVD. In this study, polycrystalline silicon thin film was deposited at a low temperature of 100℃ and then AP-PECVD experiments were performed with various plasma powers and hydrogen gas flow rates. A deposition rate of 15.2 nm/s was obtained at the VHF power of 400 W. In addition, a metal foam showerhead was employed for uniform gas supply, which provided a significant improvement in the thickness uniformity.

Effect Analysis in Laser Metal Deposition of SKD61 by Track Pitch (트랙 이행거리에 따른 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석)

  • Kim, Won-Hyuck;Jung, Byung-Hun;Oh, Myeong-Hwan;Choi, Seong-Won;Kang, Dae Min
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.94-99
    • /
    • 2014
  • In this study, AISI M2 powder was selected primarily through various literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode pumped disk laser. SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Fixed parameters are CTWD, focal position, travel speed, powder feed rate, etc. Experiments for the laser metal deposition were carried out by changing laser power. Through optical micrographs analysis of cross-section in LMD track, effect of the major parameters were predicted by track pitch. As the track pitch increased, so the reheated zone width, the overlap width and the minimum thickness was decreased. The hardness was decreased in the HAZ area, the hardness in the reheated HAZ area was decreased significantly and regularly in particular.

Effect of Substrate on Electroless Co-Base Deposited Films (무전해 코발트계 석출막에 미치는 기판의 영향)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.319-324
    • /
    • 2009
  • The deposition behavior and structural and magnetic properties of electroless Co-B and Co-Fe-B deposits, as well as the amorphous ribbon substrates, were investigated. These Co-based alloy deposits exhibited characteristic polycrystalline structures and surface morphology and magnetic properties that were dependent on the type of amorphous substrates. The catalytic activity sequence of the amorphous ribbon electrodes for anodic oxidation of DMAB was estimated from the current density-potential curve in the anodic partial electrolytic bath that did not contain the metal ions. Both the deposition rate and potential in the initial region were obtained in order of the catalytic activity, depending on the alloy compositions of the substrates. The deposition rate linearly varied against the deposition time. The initial deposition potential may have also determined the structural and magnetic properties of the deposit based on the thickness of ${\mu}m$ order. Furthermore, a basic study of the electroless deposition processes on an amorphous ribbon substrate has been carried out in connection with the structural and magnetic properties of the deposits.

Magnetoresistance of Co/Cu/Co Spin Valve Sandwiches

  • Park, S. J.;Park, K. L.;Kim, M. Y.;j. R. Rhee;D. G. Hwang;Lee, S. S.;Lee, k. A.;Park, C. M.
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 1997
  • The dependence of magnetoresistance (MR) ratio on various variables like the thickness of the second Co layer, on the presence of cap layer, on deposition field (Hdep) and on annealing in Co/Cu/Co sandwiches was investigated. Spin-valve sandwiches were deposited on the corning glass by means of the 3-gun dcmagnetron sputtering at a 5 mTorr partial Ar pressure and room temperature. The deposition field was varied from 70 Oe to 720 Oe. The MR curve was measured by the four-terminal method with applied magnetic field up to 1000 Oe perpendicular to the direction of a current in the film plne. The MR ratio of glass/Fe(50${\AA}$)/Co(17${\AA}$)/Cu(24${\AA}$)/Cot(${\AA}$) fabricated by making 50 ${\AA}$ of Fe buffer layer has the maximum value of 8.2% when the thickness of the second Co layer was 17${\AA}$and the deposition field was 350 Oe. In the case of glass/Fe(50${\AA}$)/Co(17${\AA}$)/Cu(24${\AA}$)/Cot(${\AA}$) with Cu cap layer on top, the decrease in the MR ratio seemed to relate with the oxidation of the second Co layer. Samples prepared with deposition field showed greater MR ratios through the formation of more complete spin valve films. After annealing for 2 hours at 300$^{\circ}C$, the MR ratio of the samples prepared with deposition field decreased rapidly while the MR raito of the sample prepared without the field remained.

  • PDF

CHaracteristics of (Pb,La)T$TiO_3$ Thin Film by Deposition Condition of Pulsed Laser Ablation (레이저 어블레이션에 의한 (Pb,La)$TiO_3$박막의 제작조건에 따른 특성)

  • 박정흠;박용욱;마석범
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1001-1007
    • /
    • 2001
  • In this study, high dielectric materials, (Pb,La)Ti $O_3$ thin films were fabricated by PLD (Pulsed Laser Deposition) method and investigated in terms of structural and electrical characteristics in order to develope the dielectric materials for the use of new capacitor layers of Giga bit-level DRAM. The deposition conditions were examined in order to fabricate uniform thin films through systematic changes of oxygen pressures and substrate temperature. The uniform thickness and smooth morphology of (P $b_{0.72}$L $a_{0.28}$)Ti $O_3$ thin films were obtained at the conditions of substrate-target distance 5.5[cm], laser energy density 2.1[J/$\textrm{cm}^2$], oxygen pressure 200[mTorr] and substrate temperature 500[$^{\circ}C$]. After the (P $b_{0.72}$L $a_{0.28}$)Ti $O_3$ thin films were fabricated under the above conditions, they were post-annealed by RTA process in order to increase the dielectric constant. The film thickness of 1200 [$\AA$] had dielectric constant 821. Assuming that operating voltage is 2V, leakage current density of (P $b_{0.72}$L $a_{0.28}$)Ti $O_3$ thin films would result into 10$^{-7}$ [A/$\textrm{cm}^2$] and satisfied the specification of 256M DRAM planar capacitor, 4$\times$10$^{-7}$ [A/$\textrm{cm}^2$]m}^2$]

  • PDF

Uniformity Prediction of Mist-CVD Ga2O3 Thin Film using Particle Tracking Methodology (입자추적 유동해석을 이용한 초음파분무화학기상증착 균일도 예측 연구)

  • Ha, Joohwan;Park, Sodam;Lee, Hakji;Shin, Seokyoon;Byun, Changwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.101-104
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity compared to ALD and PECVD methods. It is capable of reacting to the substrate by misting an aqueous solution using ultrasonic waves under vacuum-free conditions of atmospheric pressure. In particular, Ga2O3 is regarded as advanced power semiconductor material because of its high quality of transmittance, and excellent electrical conductivity through N-type doping. In this study, Computational Fluid Dynamics were used to predict the uniformity of the thin film on a large-area substrate. And also the deposition pattern and uniformity were analyzed using the flow velocity and particle tracking method. The uniformity was confirmed by quantifying the deposition cross section with an FIB-SEM, and the consistency of the uniformity prediction was secured through the analysis of the CFD distribution. With the analysis and experimental results, the match rate of deposition area was 80.14% and the match rate of deposition thickness was 55.32%. As the experimental and analysis results were consistent, it was confirmed that it is possible to predict the deposition thickness uniformity of Mist-CVD.