• Title/Summary/Keyword: deployment time

Search Result 440, Processing Time 0.034 seconds

Applicability Evaluation of Deep Learning-Based Object Detection for Coastal Debris Monitoring: A Comparative Study of YOLOv8 and RT-DETR (해안쓰레기 탐지 및 모니터링에 대한 딥러닝 기반 객체 탐지 기술의 적용성 평가: YOLOv8과 RT-DETR을 중심으로)

  • Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Seungyeol Oh;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1195-1210
    • /
    • 2023
  • Coastal debris has emerged as a salient issue due to its adverse effects on coastal aesthetics, ecological systems, and human health. In pursuit of effective countermeasures, the present study delineated the construction of a specialized image dataset for coastal debris detection and embarked on a comparative analysis between two paramount real-time object detection algorithms, YOLOv8 and RT-DETR. Rigorous assessments of robustness under multifarious conditions were instituted, subjecting the models to assorted distortion paradigms. YOLOv8 manifested a detection accuracy with a mean Average Precision (mAP) value ranging from 0.927 to 0.945 and an operational speed between 65 and 135 Frames Per Second (FPS). Conversely, RT-DETR yielded an mAP value bracket of 0.917 to 0.918 with a detection velocity spanning 40 to 53 FPS. While RT-DETR exhibited enhanced robustness against color distortions, YOLOv8 surpassed resilience under other evaluative criteria. The implications derived from this investigation are poised to furnish pivotal directives for algorithmic selection in the practical deployment of marine debris monitoring systems.

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.

Machine-learning-based out-of-hospital cardiac arrest (OHCA) detection in emergency calls using speech recognition (119 응급신고에서 수보요원과 신고자의 통화분석을 활용한 머신 러닝 기반의 심정지 탐지 모델)

  • Jong In Kim;Joo Young Lee;Jio Chung;Dae Jin Shin;Dong Hyun Choi;Ki Hong Kim;Ki Jeong Hong;Sunhee Kim;Minhwa Chung
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.109-118
    • /
    • 2023
  • Cardiac arrest is a critical medical emergency where immediate response is essential for patient survival. This is especially true for Out-of-Hospital Cardiac Arrest (OHCA), for which the actions of emergency medical services in the early stages significantly impact outcomes. However, in Korea, a challenge arises due to a shortage of dispatcher who handle a large volume of emergency calls. In such situations, the implementation of a machine learning-based OHCA detection program can assist responders and improve patient survival rates. In this study, we address this challenge by developing a machine learning-based OHCA detection program. This program analyzes transcripts of conversations between responders and callers to identify instances of cardiac arrest. The proposed model includes an automatic transcription module for these conversations, a text-based cardiac arrest detection model, and the necessary server and client components for program deployment. Importantly, The experimental results demonstrate the model's effectiveness, achieving a performance score of 79.49% based on the F1 metric and reducing the time needed for cardiac arrest detection by 15 seconds compared to dispatcher. Despite working with a limited dataset, this research highlights the potential of a cardiac arrest detection program as a valuable tool for responders, ultimately enhancing cardiac arrest survival rates.

Analysis of characteristics of out-of-hospital cardiac arrest patients by region in Chungcheong buk-do (충청북도 내 지역별 병원 전 심장정지 환자의 특성에 대한 분석)

  • Seong Bin Im;Hyeon Mo Yang;Young Jae Kim
    • Smart Media Journal
    • /
    • v.13 no.5
    • /
    • pp.33-44
    • /
    • 2024
  • Chungbuk has various regional characteristics in terms of population composition by region, industrial facilities, and distribution of emergency medical institutions. However, there are no studies yet that have analyzed regional characteristic factors related to the occurrence characteristics of cardiac arrest patients. Therefore, this study provided basic data to establish a response system for OHCA patients suitable for the characteristics of the Chungcheongbuk-do region by analyzing the characteristics of OHCA patients and the transfer status of 119 paramedics in Chungcheongbuk-do. This study is a retrospective study that analyzed 1,188 cardiac arrest patients transferred by ambulance based on raw data from the survey on acute cardiac arrest in Chungbuk (2020). There are a total of 11 emergency medical institutions in Chungbuk-do, which are concentrated in city-level areas, so the transfer time of patients to hospitals in county-level areas was delayed. In the county-level area, the frequency of dispatch of special paramedics was relatively small, and the frequency of administration of cardiac arrest drugs to help resuscitate cardiac arrest patients was also low. In conclusion, efforts should be made to improve accessibility of emergency medical services (deployment of emergency vehicles in marginal areas, proper placement of emergency medical institutions, etc.), to promote prevention of traumatic cardiac arrest patients, and to expand the scope of work to strengthen the first aid expertise of paramedics.

Enhancing Small-Scale Construction Sites Safety through a Risk-Based Safety Perception Model (소규모 건설현장의 위험성평가를 통한 안전인지 모델 연구)

  • Kim, Han-Eol;Lim, Hyoung-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.97-108
    • /
    • 2024
  • This research delves into the escalating concerns of accidents and fatalities in the construction industry over the recent five-year period, focusing on the development of a Safety Perception Model to augment safety measures. Given the rising percentage of elderly workers and the concurrent drop in productivity within the sector, there is a pronounced need for leveraging Fourth Industrial Revolution technologies to bolster safety protocols. The study comprises an in-depth analysis of statistical data regarding construction-related fatalities, aiming to shed light on prevailing safety challenges. Central to this investigation is the formulation of a Safety Perception Model tailored for small-scale construction projects. This model facilitates the quantification of safety risks by evaluating safety grades across construction sites. Utilizing the DWM1000 module, among an array of wireless communication technologies, the model enables the real-time tracking of worker locations and the assessment of safety levels on-site. Furthermore, the deployment of a safety management system allows for the evaluation of risk levels associated with individual workers. Aggregating these data points, the Safety Climate Index(SCLI) is calculated to depict the daily, weekly, and monthly safety climate of the site, thereby offering insights into the effectiveness of implemented safety measures and identifying areas for continuous improvement. This study is anticipated to significantly contribute to the systematic enhancement of safety and the prevention of accidents on construction sites, fostering an environment of improved productivity and strengthened safety culture through the application of the Safety Perception Model.

Study on Weather Modification Hybrid Rocket Experimental Design and Application (기상조절용 하이브리드 로켓의 실험 설계 및 활용연구)

  • Joo Wan Cha;Bu-Yo Kim;Miloslav Belorid;Yonghun Ro;A-Reum Ko;Sun Hee Kim;Dong-Ho Park;Ji Man Park;Hae Jung Koo;Ki-Ho Chang;Hong Hee Lee;Soojong Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.203-216
    • /
    • 2024
  • The National Institute of Meteorological Sciences in Korea has developed the Weather Modification Hybrid Rocket (WMHR), an advanced system that offers enhanced stability and cost-effectiveness over conventional solid-fuel rockets. Designed for precise operation, the WMHR enables accurate control over the ejection altitude of pyrotechnics by modulating the quantity of oxidizer, facilitating specific cloud seeding at various atmospheric layers. Furthermore, the rate of descent for pyrotechnic devices can be adjusted by modifying parachute sizes, allowing for controlled dispersion time and concentration of seeding agents. The rocket's configuration also supports adjustments in the pyrotechnic device's capacity, permitting tailored seeding agent deployment. This innovation reflects significant technical progression and collaborations with local manufacturers, in addition to efforts to secure testing sites and address hybrid rocket production challenges. Notable outcomes of this project include the creation of a national framework for weather modification technology utilizing hybrid rockets, enhanced cloud seeding methods, and the potential for broader meteorological application of hybrid rockets beyond precipitation augmentation. An illustrative case study confirmed the WMHR's operational effectiveness, although the impact on cloud seeding was limited by unfavorable weather conditions. This experience has provided valuable insights and affirmed the system's potential for varied uses, such as weather modification and deploying high-altitude meteorological sensors. Nevertheless, the expansion of civilian weather rocket experiments in Korea faces challenges due to inadequate infrastructure and regulatory limitations, underscoring the urgent need for advancements in these areas.

Analysis and implications of North Korea's new strategic drones 'Satbyol-4', 'Satbyol-9' (북한의 신형 전략 무인기 '샛별-4형', '샛별-9형' 분석과 시사점)

  • Kang-Il Seo;Jong-Hoon Kim;Man-Hee Won;Dong-Min Lee;Jae-Hyung Bae;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.167-172
    • /
    • 2024
  • In major wars of the 21st century, drones are expanding beyond surveillance and reconnaissance to include land and air as well as sea and underwater for purposes such as precision strikes, suicide attacks, and cognitive warfare. These drones will perform multi-domain operations, and to this end, they will continue to develop by improving the level of autonomy and strengthening scalability based on the High-Low Mix concept. Recently, drones have been used as a major means in major wars around the world, and there seems to be a good chance that they will evolve into game changers in the future. North Korea has also been making significant efforts to operate reconnaissance and attack drones for a long time. North Korea has recently continued to engage in provocations using drones, and its capabilities are gradually becoming more sophisticated. In addition, with the recent emergence of new strategic Drones, wartime and peacetime threats such as North Korea's use of these to secure surveillance, reconnaissance and early warning capabilities against South Korea and new types of provocations are expected to be strengthened. Through this study, we hope to provide implications by analyzing the capabilities of North Korea's strategic Drones, predicting their operation patterns, and conducting active follow-up research on the establishment of a comprehensive strategy, such as our military's drone deployment and counter-drone system solutions.

Fast Join Mechanism that considers the switching of the tree in Overlay Multicast (오버레이 멀티캐스팅에서 트리의 스위칭을 고려한 빠른 멤버 가입 방안에 관한 연구)

  • Cho, Sung-Yean;Rho, Kyung-Taeg;Park, Myong-Soon
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.625-634
    • /
    • 2003
  • More than a decade after its initial proposal, deployment of IP Multicast has been limited due to the problem of traffic control in multicast routing, multicast address allocation in global internet, reliable multicast transport techniques etc. Lately, according to increase of multicast application service such as internet broadcast, real time security information service etc., overlay multicast is developed as a new internet multicast technology. In this paper, we describe an overlay multicast protocol and propose fast join mechanism that considers switching of the tree. To find a potential parent, an existing search algorithm descends the tree from the root by one level at a time, and it causes long joining latency. Also, it is try to select the nearest node as a potential parent. However, it can't select the nearest node by the degree limit of the node. As a result, the generated tree has low efficiency. To reduce long joining latency and improve the efficiency of the tree, we propose searching two levels of the tree at a time. This method forwards joining request message to own children node. So, at ordinary times, there is no overhead to keep the tree. But the joining request came, the increasing number of searching messages will reduce a long joining latency. Also searching more nodes will be helpful to construct more efficient trees. In order to evaluate the performance of our fast join mechanism, we measure the metrics such as the search latency and the number of searched node and the number of switching by the number of members and degree limit. The simulation results show that the performance of our mechanism is superior to that of the existing mechanism.

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.