• 제목/요약/키워드: depleted Oil reservoir

검색결과 7건 처리시간 0.021초

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

고갈 유전 저류층에서 노달분석을 이용한 CO2 주입성 분석 연구 (A Study on CO2 injectivity with Nodal Analysis in Depleted Oil Reservoirs)

  • 안유빈;김재윤;권순일
    • 한국가스학회지
    • /
    • 제28권2호
    • /
    • pp.66-75
    • /
    • 2024
  • 본 연구에서는 말레이시아 고갈 유전에 대해 노달분석을 통한 CO2 주입성 분석 모델을 개발하였다. 유정시험이 수행된 평가정 현장 자료를 토대로 기본 모델을 구축하고 주입 압력, 주입관 크기, 저류층 압력, 저류층 투과도, 그리고 두께에 대하여 민감도 분석을 수행하였다. A 유전 평가정 산출시험 보고서를 토대로 생산 노달분석을 수행하여 투과도를 10md로 산출하였다. A 평가정 기본 입력자료를 활용하여 주입정 모델을 설정한 후, 기본 모델에 대하여 노달 분석 결과 운영 공저 압력 3000.74psia에서 CO2 주입량이 13.29MMscfd로 산출되었다. 민감도 분석 결과, 주입 압력, 저류층 두께, 투과도가 높아지거나 저류층 압력이 낮아지면 주입량이 대략 선형적으로 증가하였다. 또한, 단위 인치 당 주입량 분석을 통해 주입관 크기 2.548inch일 때 가장 효율적으로 주입할 수 있음을 도출할 수 있었다. 지층 파쇄압력을 알고 있다면 노달분석을 수행하여 운영 공저 압력과의 비교를 통해 주입 가능한 최대 저류층 압력과 주입 압력을 예측할 수 있을 것으로 생각된다.

미생물을 이용한 원유 회수증진법에 대한 동향연구 (Brief Review on Microbial Enhanced Oil Recovery)

  • 오경석
    • 한국응용과학기술학회지
    • /
    • 제38권4호
    • /
    • pp.1010-1019
    • /
    • 2021
  • 유전에 매장된 석유는 1차, 2차, 그리고 3차에 걸쳐 회수된다. 3차 회수로 분류된 공법 중 미생물을 이용한 원유 회수증진법은 크게 in-situ와 ex-situ 공법으로 나눌 수 있다. In-situ 공법은 미생물을 저류층에 직접 투입하여 미생물의 대사활동을 통한 원유의 회수를 유도하는 공법이다. 대사물질 중 바이오 계면활성제는 저류층 잔존 유분의 유동화에 큰 역할을 한다. 한편, ex-situ 공법은 외부에서 미생물의 대사물질을 추출하여 저류층에 투입하여 원유를 회수하는 방법이다. 두 가지 공법 모두 친환경적이지만, 보다 경제적인 in-situ 공법이 선호된다. 미생물을 이용한 원유 회수증진법은 오랜기간 검토되었음에도, 현재까지도 파일럿 규모에서 여전히 평가가 진행 중이다. 본 논문에서는, in-situ 공법에 적용가능한 미생물 중 박테리아의 종 특성과 대사물질에 대해서 살펴보았다.

고갈가스전에의 적정 가스저장시스템 분석을 위한 시뮬레이션 연구 (A Simulation Study on the Analysis of Optimal Gas Storage System of the Depleted Gas Reservoir)

  • 이영수;최해원;이정환;한정민;류상수;노정용;성원모
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.515-522
    • /
    • 2007
  • 본 연구에서는 가상의 "흑곰-HY" 가스전을 대상으로 상용저류전산시뮬레이터인 "ECLIPSE 300"을 사용하여 가스저장전으로 전환에 대비한 기술적 타당성을 평가하고자 하였다. 이 저류층의 매장량은 143 BCF로서 소규모 가스전이며, 공극률과 투과도는 각각 19.5%와 50 md로 가스의 순환이 원활이 이루어질 수 있는 비교적 양호한 저류층이다. 이 저류층에 대하여 가스저장전으로의 전환시 핵심적 검토항목인 쿠션가스 양, 저장전으로의 전환시점, 운영사이클 변경, 가스정의 수 및 수평정 적용 가능성 등에 대한 분석을 수행하였다. 분석결과, "흑곰-HY" 가스저장전에서 안정적인 가스저장을 위해서는 쿠션가스가 최소한 50% 이상이 되어야 함을 알 수 있었다. 또한 가스를 더 오랜기간동안 생산하기 위해 잔류가스를 적정 쿠션가스 양보다 적게 남겨두어도 추가로 쿠션가스만 주입하면 기술적으로는 아무 문제가 없는 것으로 나타났다. 한편, 가스를 5개월 대신 동절기 3개월간만 재생산하는 운영사이클의 경우에는 쿠션가스를 60% 이상으로 높여주거나 가스정의 수를 늘려야만 재생산이 가능한 것으로 나타났다. 가스정의 수에 대한 분석결과에서는 6개와 8개인 경우에는 저류층내 잔류가스가 증가하여 정상적인 재생산이 불가능하므로 "흑곰-HY" 가스전에서는 최소 10개의 수직가스정이 운영되어야 함을 알 수 있었다. 이에 반해 2개의 기존 수직정에 3개의 수평정을 추가로 시추하게 되면 비교적 안정적인 주입과 재생산이 가능한 것으로 산출되었다.

캐나다 아사바스카 오일샌드 지질특성 (Geology of Athabasca Oil Sands in Canada)

  • 권이균
    • 한국석유지질학회지
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 오일샌드는 비재래형(unconventional) 석유자원의 하나로서 비투멘(bitumen), 물, 점토, 모래의 혼합물이다. 오일샌드 비투멘은 API 비중이 $8-14^{\circ}$이고 점도가 10,000 cP 이상인, 매우 무겁고 점성이 큰 탄화수소 자원으로서 일반적으로 지표나 천부퇴적층에서 유동성을 갖지 않는다. 오일샌드 비투멘은 주로 캐나다 앨버타주와 사스캐추완주에 분포하고 있으며, 캐나다에만 원시부존량이 1조 7천억 배럴, 확인매장량이 1천 7백억 배럴에 달한다. 대부분은 앨버타주 포트 멕머레이(Fort McMurray) 인근의 아사바스카(Athabasca), 콜드레이크(Cold Lake), 피스리버(Peace River) 지역에 매장되어 있다. 캐나다 오일샌드 저류지층은 아사바스카 지역의 멕머레이층(McMurray Fm)과 클리어워터층(Clearwater Fm), 콜드레이크 지역의 멕머레이층(McMurray Fm), 클리어워터층(Clearwater Fm), 그랜드래피드층(Grand Rapid Fm), 피스리버 지역의 블루스카이층(Bluesky Fm)과 게팅층(Gething Fm)이다. 이들 지층은 하부 백악기 지층으로서 중생대 초-중기에 발생한 북미판과 태평양판의 충돌과 그로 인한 대륙전면분지(foreland basin)의 형성과정에서 퇴적되었다. 분지의 기반암은 복잡한 지형을 갖는 고생대 탄산염암이며, 그 위에 북미대륙 북쪽의 보레알해(Boreal Sea)로부터 현재의 북미대륙 서부를 남북으로 관통하는 전기백악기내해로(Early Cretaceous Interior Seaway)를 따라 해침이 발생하면서 오일샌드 저류지층이 형성되었다. 세 개의 주요 오일샌드 분포지역 가운데 80% 이상의 오일샌드를 매장하고 있는 아사바스카 지역의 저류지층인 멕머레이층과 크리어워터층의 최하부층원인 와비스코 층원(Wabiskaw Mbr)은 전기 백악기 시기의 해침층서를 잘 반영하고 있다. 멕머레이층 하부에는 하성기원의 퇴적층이 발달하고, 상부로 가면서 점차로 조석기원의 천해 퇴적층이 우세해지며, 와비스코 층원에 와서는 의해 세립질 퇴적층이 광역적으로 분포한다. 이러한 해침기원의 상향 세립화 경향은 아사바스카 오일샌드 부존지역에서 일반적으로 관찰된다. 오일샌드 부존지층은 일반적으로 불균질 저류층이며, 주요 저류층은 하성퇴적층이나 에스츄어리(estuary) 기원의 퇴적층에 발달한 하도-포인트 바 복합체(channel-pont bar complex)이다. 이러한 하도-포인트바 복합체는 범람원 및 조수평원 세립질 퇴적층이나 만-충진(bay-fill) 퇴적층과 함께 멕머레이층을 형성한다. 멕머레이층 상부에 오는 와비스코 층원은 주로 외해 세립질 퇴적층으로 이루어져 있으나, 멕머레이층을 대규모로 침식하는 하도사암층이 지역적으로 발달하기도 한다. 캐나다에서 오일샌드는 주로 노천채굴(surface mining)과 심부열회수(in-situ thermal recovery) 방식으로 생산한다. 50 m 미만의 심도에 묻혀있는 오일샌드는 노천채굴 방식으로 회수하여 비투멘 추출(extraction)과 개질(upgrading)과정을 거쳐 합성원유(synthetic crude oil)로 생산된다. 반면에 150-450 m 심도에 묻혀있는 오일샌드는 주로 심부열회수 방식으로 비투멘을 회수하여 비교적 간단한 비투멘 블렌딩(blending)과정을 통해 유동성을 증가시켜 정유시설로 운반한다. 심부열회수 방식으로 오일샌드를 개발할 경우 주로 스팀주입중력법(SAGD: Steam Assisted Gravity Drainage)이나 주기적스팀강화법(CSS: Cyclic Steam Stimulation)이 사용된다. 이러한 방법들은 저류층에 스팀을 주입하여 저류층 내의 온도를 상승시킴으로써 비투멘의 유동성을 증가시켜 회수하는 기술을 사용한다. 따라서 오일샌드 저류층 내부의 스팀전파효율을 결정하는 저류지층의 주요 지질특성에 대한 이해가 선행되어야 효과적인 생산설계와 효율적인 생산을 수행할 수 있다. 오일샌드 생산에 영향을 미치는 저류층의 주요 지질특성에는 (1)비투멘 샌드층의 두께(pay) 및 연결성(connectivity), (2) 비투멘 함량, (3) 저류지역 지질구조, (4) 이질배플(mud baffle)이나 이질프러그(mud plug)의 분포, (5) 비투멘 샌드층에 협재하는 이질퇴적층의 두께 및 수평연장성(lateral continuity), (6) 수포화층(water-saturated sand)의 분포, (7) 가스포화층(gas-saturated sand)의 분포, (8) 포인트바의 성장방향성, (9) 속성층(diagenetic layer)의 분포, (10) 비투멘 샌드층의 조직특성 변화 등이 있다. 이러한 지질특성에 대한 고해상의 분석을 통해 보다 효과적인 오일샌드 개발이 달성될 수 있을 것이다.

  • PDF

아스팔텐의 미생물 분해 연구동향 (Brief Review on the Microbial Biodegradation of Asphaltenes )

  • 오경석;이종범;김유진;박주일
    • 유기물자원화
    • /
    • 제32권2호
    • /
    • pp.27-35
    • /
    • 2024
  • 원유성분은 크게 saturates, aromatics, resins, 그리고 asphaltenes(아스팔텐)으로 나눌 수 있다. 미생물을 이용한 아스팔텐의 생분해가 가능할 경우, 폐유전으로부터 추가적인 원유생산이 기대된다. 한편, 다른 용도인 유출유 처리를 위해서도 미생물을 이용한 유분의 생분해를 시도할 수 있는데, 이 경우에도 아스팔텐의 분해는 중요한 역할을 한다. 이미 아스팔텐이 박테리아 군체를 통해 생분해되는 특성은 보고되어 있다. 그러나, 아스팔텐의 분해 메카니즘에 대해서는 아직까지 뚜렷하게 제시되지는 않았다. 가장 큰 이유로는 아스팔텐의 분자구조가 복잡하고, 주로 엉김형태로 존재하기 때문이라 할 수 있다. 본 논문에서는 상대적으로 원유내 생분해가 유리한 saturates와 aromatics의 산화반응 메카니즘에 기초하여, 아스팔텐의 분해과정을 추정하였다. 즉, 아스팔텐은 생계면활성제에 의해 박테리아와 접촉하고, 아스팔텐 구조내의 알킬기의 분해, 그리고 접합고리의 분해로 이어지는 단계적 생분해 과정을 겪을 것으로 제시하였다.

시간 경과에 따른 저류층 압력 상승이 파이프라인, 탑사이드 및 주입정 내 CO2 거동에 미치는 영향에 대한 수치해석적 연구 (Numerical Analysis of CO2 Behavior in the Subsea Pipeline, Topside and Wellbore With Reservoir Pressure Increase over the Injection Period)

  • 민일홍;허철;최윤선;김현욱;조맹익;강성길
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권4호
    • /
    • pp.286-296
    • /
    • 2016
  • 해양 CCS는 화력발전소에서 배출되는 $CO_2$를 포집하여 해양 지중의 대수층이나, 고갈 유가스전까지 수송하여 저장하는 기술이다. 시간 경과에 따라 지중 저장소로 주입 및 저장되는 $CO_2$의 누적 양이 증가하며, 이는 저류층 압력의 상승을 동반한다. 저류층 압력의 상승은 수송 및 주입 시스템의 운전조건 변화를 유발한다. 따라서 초기 설계단계에서 이러한 사업시간의 경과에 따른 운전조건 변화를 반영한 분석이 요구된다. 본 연구에서는 국내 동해 대륙붕에 위치한 가스전을 $CO_2$ 저장소로 활용할 경우 시간 경과에 따른 해양 수송 및 주입 시스템 내 $CO_2$ 거동을 수치해석적 방법을 이용하여 분석하였다. 전체 시스템을 해저 파이프라인, 라이저, 탑사이드, 주입정으로 구성하고, 이를 OLGA 2014.1을 이용하여 모델링 및 해석하였다. 약 10년의 주입 운전기간동안 해저 파이프라인, 라이저, 탑사이드, 주입정에서의 $CO_2$ 압력과 온도, 상거동의 변화를 분석하였다. 이를 통해 해저 파이프라인 입구 압축기, 탑사이드 열교환기 및 주입정 정두 제어 등의 설계 방안을 제시하였다.