DOI QR코드

DOI QR Code

Numerical Analysis of CO2 Behavior in the Subsea Pipeline, Topside and Wellbore With Reservoir Pressure Increase over the Injection Period

시간 경과에 따른 저류층 압력 상승이 파이프라인, 탑사이드 및 주입정 내 CO2 거동에 미치는 영향에 대한 수치해석적 연구

  • Min, Il Hong (Department of Convergence Study on the Ocean Science and Technology, OST School, Korea Maritime and Ocean University) ;
  • Huh, Cheol (Department of Convergence Study on the Ocean Science and Technology, OST School, Korea Maritime and Ocean University) ;
  • Choe, Yun Seon (Division of Naval Architecture and Ocean System Engineering, Korea Maritime and Ocean University) ;
  • Kim, Hyeon Uk (Division of Naval Architecture and Ocean System Engineering, Korea Maritime and Ocean University) ;
  • Cho, Meang Ik (Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering) ;
  • Kang, Seong Gil (Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering)
  • 민일홍 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 허철 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 최윤선 (한국해양대학교 조선해양시스템공학부) ;
  • 김현욱 (한국해양대학교 조선해양시스템공학부) ;
  • 조맹익 (선박해양플랜트연구소 해양CCS연구단) ;
  • 강성길 (선박해양플랜트연구소 해양CCS연구단)
  • Received : 2016.08.16
  • Accepted : 2016.10.26
  • Published : 2016.11.25

Abstract

Offshore CCS technology is to transport and inject $CO_2$ which is captured from the power plant into the saline aquifer or depleted oil-gas fields. The more accumulated injected $CO_2$, the higher reservoir pressure increases. The increment of reservoir pressure make a dramatic change of the operating conditions of transport and injection systems. Therefore, it is necessary to carefully analyze the effect of operating condition variations over the injection period in early design phase. The objective of this study is to simulate and analyze the $CO_2$ behavior in the transport and injection systems over the injection period. The storage reservoir is assumed to be gas field in the East Sea continental shelf. The whole systems were consisted of subsea pipeline, riser, topside and wellbore. Modeling and numerical analysis were carried out using OLGA 2014.1. During the 10 years injection period, the change of temperature, pressure and phase of $CO_2$ in subsea pipelines, riser, topside and wellbore were carefully analyzed. Finally, some design guidelines about compressor at inlet of subsea pipeline, heat exchanger on topside and wellhead control were proposed.

해양 CCS는 화력발전소에서 배출되는 $CO_2$를 포집하여 해양 지중의 대수층이나, 고갈 유가스전까지 수송하여 저장하는 기술이다. 시간 경과에 따라 지중 저장소로 주입 및 저장되는 $CO_2$의 누적 양이 증가하며, 이는 저류층 압력의 상승을 동반한다. 저류층 압력의 상승은 수송 및 주입 시스템의 운전조건 변화를 유발한다. 따라서 초기 설계단계에서 이러한 사업시간의 경과에 따른 운전조건 변화를 반영한 분석이 요구된다. 본 연구에서는 국내 동해 대륙붕에 위치한 가스전을 $CO_2$ 저장소로 활용할 경우 시간 경과에 따른 해양 수송 및 주입 시스템 내 $CO_2$ 거동을 수치해석적 방법을 이용하여 분석하였다. 전체 시스템을 해저 파이프라인, 라이저, 탑사이드, 주입정으로 구성하고, 이를 OLGA 2014.1을 이용하여 모델링 및 해석하였다. 약 10년의 주입 운전기간동안 해저 파이프라인, 라이저, 탑사이드, 주입정에서의 $CO_2$ 압력과 온도, 상거동의 변화를 분석하였다. 이를 통해 해저 파이프라인 입구 압축기, 탑사이드 열교환기 및 주입정 정두 제어 등의 설계 방안을 제시하였다.

Keywords

References

  1. E.ON, 2011, "Key knowledge reference book; Kingsnorth carbon dioxide capture and storage demonstration project".
  2. GCCSI, 2015, "The global status of CCS: 2015 summary report", Global CCS Institute.
  3. Gough, C., Mander, S. and Haszeldine, S., 2010, "A roadmap for carbon capture and storage in the UK", Int. J. Greenh. Gas Control, Vol. 4, 1-12. https://doi.org/10.1016/j.ijggc.2009.10.014
  4. Hosseini, S.A., Lashgari, H., Choi, J.W., Nicot, J.P., Lu, J. and Hovorka, S.D., 2013, "Static and dynamic reservoir modeling for geological $CO_2$ sequestration at Cranfield, Mississippi, U.S.A.", Int. J. Greenh. Gas Control, Vol. 18, 449-462. https://doi.org/10.1016/j.ijggc.2012.11.009
  5. Huh, C., Kang, S.G. and Cho, M.I., 2016, "Numerical analysis on depressurization of high pressure carbon dioxide pipeline", J. Korean Soc. Mar. Environ. Energy, Vol. 19, 52-61. https://doi.org/10.7846/JKOSMEE.2016.19.1.52
  6. KIOST, 2014, "Offshore environment survey; offshore carbon geological storage site", Korea Institute of Ocean Science and Technology.
  7. KNOC, 2015, "Carbon Storage Potential in the Ulleung Basin, South Korea: Prospect Modelling and Ranking".
  8. KRISO, 2016, "Whole CCS system operation philosophy covering steady state and transient operation flow assurance", Korea Clean Carbon Storage Project 2025 Pre-FEED report, KCCS-PJDWSOP-3.10-KMOU-Rev01.
  9. NOAA, 2016, ETOPO1 Global Relief Model, https://www.ngdc.noaa.gov/mgg/global/global.html, National Centers for Environmental Information, National Oceanic and Atmospheric Administration.
  10. Schlumberger, 2014, "OLGA version 2014.1 User Manual".

Cited by

  1. Instability Analysis of Supercritical CO2 during Transportation and Injection in Carbon Capture and Storage Systems vol.11, pp.8, 2018, https://doi.org/10.3390/en11082040