• Title/Summary/Keyword: density-of-states (DOS)

Search Result 36, Processing Time 0.027 seconds

Effect of Density-of-States (DOS) Parameters on the N-channel SLS Poly-Si TFT Characteristics

  • Ryu, Myung-Kwan;Kim, Eok-Su;Son, Gon;Lee, Jung-Yeal
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.718-722
    • /
    • 2006
  • The dependence of n-channel 2 shot SLS poly-Si TFT characteristics on the DOS (density of states) parameters was investigated by using a device simulation. Device performances were most sensitive to the DOS of poly-Si/gate insulator (GI) interface and poly-Si active layer. Deep level states at the poly-Si/GI interfaces strongly affect the subthreshold slope.

  • PDF

Characterization of Density-of-States in Polymer-based Organic Thin Film Transistors and Implementation into TCAD Simulator

  • Kim, Jaehyeong;Jang, Jaeman;Bae, Minkyung;Lee, Jaewook;Kim, Woojoon;Hur, Inseok;Jeong, Hyun Kwang;Kim, Dong Myong;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.43-47
    • /
    • 2013
  • In this work, we report extraction of the density-of-states (DOS) in polymer-based organic thin film transistors through the multi-frequency C-V spectroscopy. Extracted DOS is implemented into a TCAD simulator and obtained a consistent output curves with non-linear characteristics considering the contact resistance effect. We employed a Schottky contact model for the source and drain to fully reproduce a strong nonlinearity with proper physical mechanisms in the output characteristics even under a very small drain biases. For experimental verification of the model and extracted DOS, 2 different OTFTs (P3HT and PQT-12) are employed. By controlling the Schottky contact model parameters in the TCAD simulator, we accurately reproduced the nonlinearity in the output characteristics of OTFT.

Physics-Based SPICE Model of a-InGaZnO Thin-Film Transistor Using Verilog-A

  • Jeon, Yong-Woo;Hur, In-Seok;Kim, Yong-Sik;Bae, Min-Kyung;Jung, Hyun-Kwang;Kong, Dong-Sik;Kim, Woo-Joon;Kim, Jae-Hyeong;Jang, Jae-Man;Kim, Dong-Myong;Kim, Dae-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.153-161
    • /
    • 2011
  • In this work, we report the physics-based SPICE model of amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) and demonstrate the SPICE simulation of amorphous InGaZnO (a-IGZO) TFT inverter by using Verilog-A. As key physical parameter, subgap density-of-states (DOS) is extracted and used for calculating the electric potential, carrier density, and mobility along the depth direction of active thin-film. It is confirmed that the proposed DOS-based SPICE model can successfully reproduce the voltage transfer characteristic of a-IGZO inverter as well as the measured I-V characteristics of a-IGZO TFTs within the average error of 6% at $V_{DD}$=20 V.

Theoretical Electronic Structure of PTCDA and PTCDI Molecules

  • Hyeon, Jeong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.221-223
    • /
    • 2013
  • Self-assembly of the molecular system of perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) and the amide analogue (PTCDI) is of potential importance for organic semiconductor devices. Therefore we studied the density of states (DOS), the charge densities, and intermolacular bond lengths for PTCDA and PTCDI using the density functional theory calculations.

  • PDF

InSe 단일층의 vacancy 결함 특성 연구

  • Lee, Seo-Yun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.468-472
    • /
    • 2017
  • 2차원 InSe 단일층에 존재할 수 있는 vacancy defect인 In vacancy, Se vacancy의 원자구조 및 전자구조 특성을 제일원리계산을 이용해 살펴보았다. InSe $5{\times}5$ supercell을 이용하였으며 total energy를 구해 어떤 구조가 가장 안정한지 찾았다. Relax된 결함구조들을 clean InSe와 비교하여 어떤 변화가 있었는지 특징을 분석하였다. 이러한 intrinsic 결함들이 각각 어떤 구조로 relaxation되는지 살펴보고 clean InSe와 비교해보았다. 또한 각 결함구조의 density of states (DOS), projected density of states (PDOS)와 band structure를 clean InSe와 비교해봄으로써 defect state가 어떻게 나타나는지를 찾아보았다.

  • PDF

Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach

  • Moon, Hye Sook;Lee, Ji Hye;Kwon, Soonchul;Kim, Il Tae;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.116-120
    • /
    • 2015
  • We investigated the adsorption of Na on graphene and graphene oxide, which are used as anode materials in sodium ion batteries, using density functional theory. The adsorption energy for Na on graphene was -0.507 eV at the hollow sites, implying that adsorption was favorable. In the case of graphene oxide, Na atoms were separately adsorbed on the epoxide and hydroxyl functional groups. The adsorption of Na on graphene oxide-epoxide (adsorption energy of -1.024 eV) was found to be stronger than the adsorption of Na on pristine graphene. However, the adsorption of Na on graphene oxide-hydroxyl resulted in the generation of NaOH as a by-product. Using density of states (DOS) calculations, we found that the DOS of the Na-adsorbed graphene was shifted down more than that of the Na-adsorbed graphene oxide-epoxide. In addition, the intensity of the DOS around the Fermi level for the Na-adsorbed graphene was higher than that for the Na-adsorbed graphene oxide-epoxide.

Density Functional Theory of PTCDA Adsorption on Si(111)In-8×8 at Room Temperature

  • Hyeon, Jeong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.475-477
    • /
    • 2014
  • Self-assembly of the molecular system of perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) is of such potential importance for organic semiconductor devices that PTCDA molecule on a variety of substrates has been extensively studied. Therefore we studied the density of states (DOS), the charge densities, and intermolacular bond lengths for PTCDA, and investigated PTCDA absorptioni sites on Si(111)In-$8{\times}8$ at room temperature using the density functional theory calculations.

  • PDF

Ab initio calculation of half-metallic ferrocene-based nanowire

  • Kim, Seongmin;Park, Changhwi
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.425-429
    • /
    • 2014
  • Half-metallic nanostructure is highly applicable in the field of Spintronics and electronic device technology. We examine the electronic properties of a ferrocene-based nanowire as a possible candidate for a half-metallic nanostructure using VASP and SIESTA. Ferrocene-based nanowire shows high stability in both binding energy simulation and molecular dynamics (MD) simulation. The density of states (DOS) and the projected DOS of the ferrocene-based nanowire indicate that one-dimensional clustering of ferrocene molecules can be explained because of p-d orbital hybridization between iron and carbon. Half-metallic property and energy dispersion at the Fermi level due to one-dimensional structure is also observed from the DOS results.

  • PDF

Spin Polarization of CuD Nanowires

  • Hong, Ji-Sang
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.20-24
    • /
    • 2006
  • Very recently, it was presented that the one dimensional (1D) CuO atomic chains can maintain large magnetic moments. In this work, we analyzed m-resolved density of states (DOS) to understand the peculiar spin polarization occurred in Cu atoms. It was found that the $\mid{m}\mid=1$ states play an essential role in the spin polarization of Cu atoms. In addition, we calculated magnetic anisotropy energy (MAE) and observed that the distribution of MAE is strongly sensitive to the interatomic distance between Cu and O atoms. Besides, it was revealed that the contribution to MAE comes for the second half of Brillouin zone (BZ).

Electronic Structures of Giant Magnetocaloric $Gd_5Si_2Ge_2$ Alloy

  • Rhee, Joo-Yull
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.4
    • /
    • pp.153-157
    • /
    • 2002
  • The electronic structures of Gd$_{5}$Si$_2$Ge$_2$ compound, which has a giant magnetocaloric effect, in the monoclinic and orthorhombic phases were calculated using the tight-binding linear-muffin-tin-orbital method within the atomic-sphere approximation. The calculated total energies of the monoclinic and orthorhombic structures in the paramagnetic phase confirm that the orthorhombic structure is more stable than monoclinic structure. The density of states (DOS) at the Fermi level of the orthorhombic phase is higher than that of the monoclinic phase in the paramagnetic phase, fulfilling the Stoner criterion. The calculated charge density verified the breaking of Ge(Si)-Ge(Si) bonding in the basal plane upon the orthorhombic-monoclinic phase transition. The DOS curve fairly well reproduces the photoemission spectrum.m.

  • PDF