• Title/Summary/Keyword: density uniformity index

Search Result 28, Processing Time 0.03 seconds

Numerical simulation of the effect of pipe size and foam inlet angle on mixing of cement slurry and foam

  • Leilei Wang
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.285-292
    • /
    • 2024
  • In order to improve the mixing effect of slurry-foam during the preparation of foam concrete, this study takes an SK static mixer as the mixing device, establishes a three-dimensional physical model and a theoretical calculation model, and numerically simulates the effects of different parameters such as foam inlet angle and pipe inner diameter on the mixing of cement slurry and foam under the given boundary conditions, so as to optimize the structure of this mixing device. The results show that when the pipe diameter of the mixer is larger than 60 mm, the phenomenon of backflow occurs in the pipe, which affects the mixing effect. The smaller the pipe diameter, the shorter the distance required to stabilize the cross-sectional average density and density uniformity index. When the foam inlet angle is different, the average density and density uniformity index of the radial cross-section have the same rule of change along the length of the pipeline, and all of them tend to stabilize gradually. At Y = 0.5 m, the average density basically stabilizes at 964 kg/m3 and remains stable until the outlet. At Y = 0.6 m, the density uniformity index basically stabilizes above 0.995 and remains stable until the outlet. Except for the foam inlet position (Y = 0.04 m), the foam inlet angle has little effect on the cross-sectional average density and density uniformity index. Under the boundary conditions given in this study, a pipe diameter of 40 mm, a foam inlet angle of 90°, and a pipe length of 700 mm are the optimal geometries for the preparation of homogeneous foam concrete with a density of 964 kg/m3 in this static mixer.

The Effects of the Capsule Density Uniformity on the Behavior of Cylindrical Capsules Transported through a Pipiline

  • Rhee, Kyoung-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.115-124
    • /
    • 1994
  • This paper presents the results of a study conducted to improve the understanding of the characteristics of cylindrical capsule flow in a pipeline by taking into account of the effect of capsule density uniformity. The effect fo capsule density variation in the axial direction was studied both experimentally and analytically. The experiments were conducted in a 190mm diameter straight pipe 17m long. The velocity, gap and tilt of capsules were measured under various conditions. In order to interpret the data on various capsule density conditions, the stability index given in the dimensionless number was introduced. The motion of capsules in pipelines is strongly affected by the stability of the capsules characterized by the statility index. The experiments conducted proved that the stability index is a vaild criterion for explaining and correlating data on the capsule motion and the capsule denisity uniformity.

  • PDF

The Effects of the Capsule Density Uniformity on the Behavior of Cylindrical Capsules Transported through a Pipeline (관로를 통하여 수송되는 원통형 캡슐의 거동에 대하여 캡슐밀도의 균일성이 미치는 영향)

  • 이경훈
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.97-105
    • /
    • 1993
  • This paper presents the results of a study conducted to improve the understanding of the characteristics of cylindrical capsule flow in a pipeline by taking into account of the effect of capsule density uniformity. The effect of capsule density variation in the axial direction was studied both experimentally and anaytically. The experiments were conducted in a 190mm diameter straight pipe 17m long. The velocity, gap and tilt of capsules were measured under various conditions, In order to interpret the data on various capsule density conditions, the stability index given in the dimensionless number was introduced. The motion of capsules in pipelines is strongly affected by the stability of the capsules characterized by the stability index. The experiments conducted prover that the stability index is a valid criterion for explaining and correlating data on the capsule motion and the capsule density uniformity.

  • PDF

The Effects of the Capsule Density Uniformity on the Behavior of Cylindrical Capsules Transpored through a Pipeline (관로를 통하여 수송되는 원통형 캡슐의 거동에 대하여 캡슐밀도의 균일성이 미치는 영향)

  • 이경훈;이관수
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1993.07a
    • /
    • pp.483-490
    • /
    • 1993
  • This paper presents the results of a study conducted to improve the understanding of the characteristics of cylindrical capsule flow in a pipeline by taking into account of the effect of capsule density uniformity. The effect of capsule density variation in the axial direction was studied both experimentally and analytically. The experiments were xonducted in a 190mm diameter straight pipe 18m long. The velocity, tilt of capsules and the gap between the capsule bottom and the pipe bottom were measured under various conditions. In order to interpret the data on the various capsule density conditions, the stability index given in the dimensionless numberwas introduced. The motion of capsules in pipelines is strongly affected by the stability of the capsules characterized by the stability index. The experiments conducted proved that the stability index is a valid criterion for explaining and correlating data on the capsule motion and the capsule density uniformity.

  • PDF

Study on the Soil Compaction (part II) The Influence of Passing Percentage of No. 200 Sieve on Soil Compaction (흙의 다짐에 관한 연구 (제2 보) -200번체 통과율이 다짐에 미치는 영향-)

  • 강문묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.1
    • /
    • pp.1854-1860
    • /
    • 1970
  • Results of this study on the influence of percent passing of No. 200 sieve on soil compaction are as follows; 1. The higher maximum dry density of soil is, the lower optimum moisture content is. Maximum dry density is highest value and optimum moisture content is the lowest value in twocases that percents of No. 200 sieve are 30% in soils of which percents retained on No. 10 sieve are 5% and 10% respectively. 2. Maximum dry density increases according as uniformity coefficient increase. Maximum dry density is the highest when uniformity coefficient is approximately 300 in soil of which maximum diameter is 4.76mm. 3. Maximum dry density has a tendency to become large according as value of Cu Caincrease. Correlation between maximum dry density and $Log_{10}$(CuCa) shows straight line. 4. Maximum dry density increases according as n increase and reaches the peak when n equal 0.35 in condition that the index of talbot formula n is less than 0.35 in soil of which maximum diameter is 4.76mm. 5. Maximum dry density has a tendency to increase according as value of Cg $(Cg=\frac{P_{50}^2}{P_{10}{\times}{P_{200}}$) decrease.

  • PDF

Uniformity Evaluation of Elderly Hospital Outpatients' Waiting Space using Discrete Event Simulation (이산사건 시뮬레이션을 이용한 요양병원 외래부 대기공간 균일성 평가)

  • Yoon, So-Hee;Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.490-499
    • /
    • 2017
  • In recent years, the introduction of complex systems analysis based on various variables has become more active in order to identify and analyze complex problems of Modern Society. Prediction of patients' spatial perception and usability according to the spatial arrangement of the outpatient department is a very important factor for providing high quality hospital service. For objective analysis, the standard program procedure and analysis index for the diseases of the elderly were prepared and the uniformity of the atmospheric space was evaluated through heat map analysis and quantitative analysis. In this study, 73 cells were installed and simulated to analyze the uniformity of the four alternatives according to the change of the arrangement of the medical care space, receiving space, and consultation space using the complex system analysis method for the nursing hospitals. The resulting density was derived. The results are as follows. 1)The layout of the reception space has the greatest influence on the total spatial density of the waiting space. 2) The uniformity of the waiting space can be increased by separating the examination space and the examination space. 3)The closer the location of the receiving space is from the entrance, the greater the density of the waiting space. Finally, this study applied discrete event simulation to the evaluation of uniformity of atmosphere space, and proved that the actor - based model can be utilized for utilization and evaluation as spatial analysis methodology.

Study on SiN and SiCN film production using PE-ALD process with high-density multi-ICP source at low temperature

  • Song, Hohyun;Seo, Sanghun;Chang, Hongyoung
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1436-1440
    • /
    • 2018
  • SiN and SiCN film production using plasma-enhanced atomic layer deposition (PE-ALD) is investigated in this study. A developed high-power and high-density multiple inductively coupled plasma (multi-ICP) source is used for a low temperature PE-ALD process. High plasma density and good uniformity are obtained by high power $N_2$ plasma discharge. Silicon nitride films are deposited on a 300-mm wafer using the PE-ALD method at low temperature. To analyze the quality of the SiN and SiCN films, the wet etch rate, refractive index, and growth rate of the thin films are measured. Experiments are performed by changing the applied power and the process temperature ($300-500^{\circ}C$).

Comparing the dosimetric impact of fiducial marker according to density override method : Planning study (양성자 치료계획에서 fiducial marker의 density override 방법에 따른 선량변화 비교 : Planning study)

  • Sung, Doo Young;Park, Seyjoon;Park, Ji Hyun;Park, Yong Chul;Park, Hee Chul;Choi, Byoung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Purpose: The application of density override is very important to minimize dose calculation errors by fiducial markers of metal material in proton treatment plan. However, density override with actual material of the fiducial marker could make problem such as inaccurate target contouring and compensator fabrication. Therefore, we perform density override with surrounding material instead of actual material and we intend to evaluate the usefulness of density override with surrounding material of the fiducial marker by analyzing the dose distribution according to the position, material of the fiducial marker and number of beams. Materials and Method: We supposed that the fiducial marker of gold, steel, titanium is located in 1.5, 2.5, 4.0, 6.0 cm from the proton beam's end of range using water phantom. Treatment plans were created by applying density override with the surrounding material and actual material of the fiducial marker. Also, a liver cancer patient who received proton therapy was selected. We located the fiducial marker of gold, steel, titanium in 0, 1.5, 3.5 cm from the proton beam's end of range and the treatment plans were created by same method with water phantom. Homogeneity Index(HI), Conformity Index(CI) and maximum dose of Organ At Risk(OAR) in Planning Target Volume(PTV) as the evaluation index were compared according to the material, position of the fiducial marker and number of beam. Results: The HI value was more decreased when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Especially the HI value was increased when the fiducial marker was located farther from the proton beam's end of the range for a single beam and the fiducial marker's position was closer to isocenter for two or more beams. The CI value was close to 1 and OAR maximum dose was greatly reduced when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Conclusion: Density override with surrounding material can be expected to achieve more precise proton therapy than density override with actual material of the fiducial marker and could increase the dose uniformity and target coverage and reduce the dose to surrounding normal tissues for the small fiducial markers used in clinical practice. Most of all, it is desirable to plan the treatment by avoiding the fiducial marker of metal material as much as possible. However, if the fiducial marker have on the beam path, density override of the surrounding material can be expected to achieve more precise proton therapy.

  • PDF

Study on the Fabrication and Characterization of Compact ECR Plasma System (Compact ECR plasma장치의 제작 및 특성 연구)

  • 윤민기;박원일;남기석;이기방
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.84-91
    • /
    • 1994
  • A compact electron cyclotron resonance(ECR) plasma system composed of a microwave generator and a magnet coil was fabricated. A Langmuir single probe was used to investigate the plasma characteristics of the system through I-V measurements. The performance of the compact ECR plasma system was tested for the case of silicon etching reaction with $CF_{4}/O_{2}$(30%) mixed gas. Electron density and etch rate increased to maximum values and then decreased with increasing argon gas pressure, but electron temperature changed in the opposite way. The electron density and the electron temperature of argon gas plasma were 0.85${\times}~5.5{\times}10^{10}cm^{-3}$ and 4.5~6.0 eV, respectively, in the pressure range from $3{\times}10^{4}$ to 0.05Torr. The etch rate reached a maximum value at the position of 2.5cm from the bottom of plasma cavity. Etch rate uniformity was $\pm$6% across 6cm wafer. Anisotropic index was 0.75 at 1.5${\times}10^{-4}$Torr.

  • PDF

Effect of thickness on moisture barrier properties of aluminum oxide using ozone-based atomic layer deposition

  • Juhyun Lee;Seokyoon Shin;Sejin Kwon;Woochool Jang;Hyeongsu Choi;Hyunwoo Park;Namgue Lee
    • Journal of Ceramic Processing Research
    • /
    • v.22 no.3
    • /
    • pp.253-257
    • /
    • 2021
  • Among various thin film encapsulation (TFE) methods, thin films prepared by atomic layer deposition (ALD) have been shown to provide superior protection against the permeation of moisture and oxygen. This technique has numerous of advantages such as excellent uniformity, precise thickness control, and strong adhesion. Therefore, with ozone-based ALD, we conducted the influence of the thickness of aluminum oxide (Al2O3) on moisture barrier properties. From the results of an electrical calcium test, Al2O3 had two distinctly different permeation regimes. Between 10 and 25 nm of Al2O3 thickness, the water vapor transmission rate (WVTR) decreased exponentially from 6.3 × 10-3 to 1.0 × 10-4 g m-2 day-1 (1/60 times). In contrast, as thickness increased from 25 to 100 nm, the WVTR values decreased by only two-thirds, from 1.0 × 10-4 to 6.6 × 10-5 g·m-2·day-1. To better understand the change from an exponential to a sub-exponential regime, defect density and refractive index of Al2O3 were measured. The thickness dependence on defect density and refractive index was analogous with one of moisture barrier performance. These results confirmed the existence of a critical thickness at which the WVTR decreased drastically.