• Title/Summary/Keyword: density flow regimes

Search Result 20, Processing Time 0.2 seconds

A Real-time Monitoring and Modeling of Turbidity Flow into a Reservoir (실시간 저수지 탁수 감시 및 예측 모의)

  • Chung, Se-Woong;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1184-1188
    • /
    • 2005
  • The impacts of turbidity flow induced by summer rainfall events on water supply, aquatic ecosystems, and socioeconomics are significant and major concerns in most of reservoirs operations. As a decision support tool, the real-time turbidity flow monitoring and modeling system RTMMS is under development using a laterally integrated two-dimensional (2D) hydrodynamic and water quality model. The objectives of this paper is to present the preliminary field observation results on the characteristics of rainfall-induced turbidity flows and their density flow regimes, and the model performance in replicating the fate and transport of turbidity plume in a reservoir. The rainfall-induced turbidity flows caused significant drop of river water temperature by 5 to $10^{\circ}C$ and resulted in density differences of 1.2 to $2.6kg/m^3$ between inflow water and ambient reservoir water, which consequently led development of density flows such as plunge flow and interflow in the reservoir. The 2D model was set up for the reservoir. and applied to simulate the temperature stratification, density flow regimes, and temporal and spatial turbidity distributions during flood season of 2004 After intensive refinements on grid resolutions , the model showed efficient and satisfactory performance in simulating the observed reservoir thermal stratification and turbidity profiles that all are essentially required to enhance the performance of RTMMS.

  • PDF

Development of a 9as-liquid two-phase flowmeter using double orifice plates (2중판 오리피스를 이용한 기액 2상유량계의 개발)

  • 이상천;이상무;남상철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.619-629
    • /
    • 1998
  • An experimental work was conducted to investigate a feasibility of simultaneous measurement of gas-liquid two-phase flowrates with double orifice plates using air and water. The tests were carried out under the atmospheric pressure and at the ambient temperature using two different tube sizes. Qualities of an air-water flow in the present study have values less than 0.1 and thus the mixed flow showed bubbly, plug, slug flow regimes. The probability density function (PDF) and the power spectral density function (PSDF) of the instantaneous pressure drop traces for the flow regimes were obtained. It is found that some distinctive features exist in the distribution of these functions, depending upon the two-phase flow pattern. The time-averaged value of the instantaneous pressure drop increases with increasing gas and liquid flowrates, showing a single-valued function for the total mass flowrate and the quality. It is also found that the two-phase discharge coefficient exhibits a consistent trend for variation of dimensionless parameters such as the superficial velocity ratio and the gas Reynolds number. The results indicate that simultaneous measurement of two-phase flowrate may be possible based upon a statistical analysis of the instantaneous pressure drop curves monitored using double orifice plates.

  • PDF

Determination of horizontal two-phase flow patterns based on statistical analysis of instantaneous pressure drop at an orifice (오리피스 순간압력강하의 통계해석을 통한 수평 2상유동양식의 결정)

  • 이상천;이정표;김중엽
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.810-818
    • /
    • 1987
  • A new method is proposed to identify two-phase flow regimes in horizontal gas-liquid flow, based upon a statistical analysis of instantaneous pressure drop curves at an orifice. The probability density functions of the curves indicate distinct patterns depending upon the two-phase flow regime. The transition region also could be identified by the distribution shape of the probability density function. The statistical properties of the pressure drop are analyzed for various flow regimes and transitions. Finally, the data of flow patterns determined by the proposed method are compared with the flow pattern maps suggested by other investigators.

The effect of gas density on the drop trajectory and drop size distribution in high speed gas stream (고속기류에 분사된 액적궤적 및 입경분포에 미치는 주위 기체밀도의 영향)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • High velocity, gas-assisted liquid drop trajectories were investigated under well-controlled experimental conditions at elevated gas densities and room temperature. A monodisperse stream of drops which are generated by a vibrating-orifice drop generator were injected into a transverse high velocity gas stream. The gas density and air jet velocity were adjusted independently to keep the Weber numbers constant. The Weber numbers studied were 72, 148, 270, 532. The range of experimental conditions included studied the three drop breakup regimes previously referred as bag, stretching/thinning and catastrophic breakup regimes. High-magnification photography and conventional spray field photographs were taken to study the microscopic breakup mechanisms and the drop trajectories in high velocity gas flow fields, respectively. The parent drop trajectories were affected by the gas density and the gas jet velocities and do not show similarity with respect to the either Weber or the Reynolds number, as expected.

  • PDF

Numerical Simulation of Stratified Taylor-Couette Flow (성층화된 Taylor-Couette 유동에 대한 전산해석적 연구)

  • Hwang Jong-Yeon;Yang Kyung-Soo;Kim Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.630-637
    • /
    • 2006
  • The flow regimes for a Taylor-Couette flow with a stable, axial stratification in density are investigated using numerical simulation. The flow configuration identical to that in the experiment of Boubnov, et al. (1995) is considered in the present research. The main objectives of this investigation are to verify the experimental and numerical results carried out by Boubnov, et al. and Hua et al. (1997), respectively, and to further study the detailed flow fields and flow bifurcations. With increasing buoyancy frequency of the fluid (N), the stratification-dominated flow regime, called the S-regime, is observed. It is also confirmed that the important effect of an axial density stratification is to stabilize the flow field. The present numerical results are in good agreement with Boubnov, et al. and Hua et al.'s observations.

Simulations of Temporal and Spatial Distributions of Rainfall-Induced Turbidity Flow in a Reservoir Using CE-QUAL-W2 (CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의)

  • Chung, Se-Woong;Oh, Jung-Kuk;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.655-664
    • /
    • 2005
  • A real-time monitoring and modeling system (RTMMS) for rainfall-induced turbidity flow, which is one of the major obstacles for sustainable use of reservoir water resources, is under development. As a prediction model for the RTMMS, a laterally integrated two-dimensional hydrodynamic and water quality model, CE-QUAL-W2 was tested by simulating the temperature stratification, density flow regimes, and temporal and spatial distributions of turbidity in a reservoir. The inflow water temperature and turbidity measured every hour during the flood season of 2004 were used as the boundary conditions. The monitoring data showed that inflow water temperature drop by 5 to $10^{\circ}C$ during rainfall events in summer, and consequently resulted in the development of density flow regimes such as plunge flow and interflow in the reservoir. The model showed relatively satisfactory performance in replicating the water temperature profiles and turbidity distributions, although considerable discrepancies were partially detected between observed and simulated results. The model was either very efficient in computation as the CPU run time to simulate the whole flood season took only 4 minutes with a Pentium 4(CPU 2.0GHz) desktop computer, which is essentially requited for real-time modeling of turbidity plume.

Numerical analysis of natural convection from a horizontal isothermal surface immersed in water near its density extremum (최대밀도점 부근의 물속에 잠겨있는 수평등온도면에 의하여 야기되는 자연대류의 수치해석)

  • 김병하;조승환;유갑종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.197-206
    • /
    • 1990
  • Numerical results of heat transfer from a horizontal isothermal surface are presented for wall temperature T$_{w}$ = 0 .deg. C and ambient water temperature, T$_{\infty}$, from 1 .deg. C to 15 .deg. C. They include streamlines, temperature profiles, local heat transfer coefficients and average Nusselt numbers for the entire flow fields. For a upward-facing horizontal isothermal surface, the results show steady two dimensional flow regimes for T$_{\infty}$ .leg. 4.4 .deg. C, but no solution was obtained above T$_{\infty}$ = 4.4 .deg. C. For a downward-facing horizontal isothermal surface, the flow regimes are steady two dimensional flow for T$_{\infty}$ .geq. 4.9 .deg. C, and the numerical calculation was failed below this ambient water temperature. The mean Nusselt number has its maximum value at about T$_{\infty}$ = 3.4 .deg. C for upward-facing horizontal isothermal surface. For the case of downward-facing horizontal isothermal surface, the mean Nusselt number increases as the ambient water temperature increases.es.s.s.

Characteristics of Flow Regime Transitions in Horizontal Gas-Liquid Two-Phase Flow (수평 기액2상유동에서 유동양식의 천이특성)

  • Lee, S.C.;Lee, J.P.;Kim, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.342-349
    • /
    • 1988
  • The characteristics of flow pattern transitions in a horizontal cocurrent gas-liquid flow have been investigated by means of a statistical analysis of instantaneous pressure drop curves at an orifice. The dimensionless intensity of pressure drop fluctuation shows a sudden change during the course of flow transitions, indicating that it may be a good measure to identify the flow regime transitions. The probability density function of the curves feature a unique pattern depending upon the flow regimes and the statistical properties of the PDF also have particular ranges for each flow regime. In conclusion, the statistical analysis of instantaneous pressure drops may be a powerful tool for predicting the flow regime transitions.

  • PDF

Simulations of Axisymmetric Transition Flow Regimes Using a CFD/DSMC Hybrid Method (CFD/DSMC 혼합해석기법을 이용한 축대칭 천이영역 유동 해석)

  • Choi, Young-Jae;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.169-176
    • /
    • 2019
  • In the present study, a CFD/DSMC hybrid method performed by a coupled analysis between the CFD method and the DSMC method was developed to obtain the flow information on the rarefied gas flows effectively. Flow simulations around the high speed vehicles on the transition flow regimes were conducted by using the developed method. The FRESH-FX vehicle made of cone and cylinder shapes was considered for the simulations. The results of the hybrid method were compared with the results of the pure CFD and the pure DSMC method to confirm the reliability and efficiency of the hybrid method. It was found that the gradient and the intensity of the shock waves were weakened due to the relatively low density on the transition flow regime. It was confirmed that the results of the hybrid analysis were different to those of the pure CFD analysis and almost identical to those of the pure DSMC analysis. In addition, the computational time of the hybrid method was reduced than that of the pure DSMC method. As a result, it was obtained that the validity and the efficiency of the CFD/DSMC hybrid method.