• 제목/요약/키워드: dense element

검색결과 93건 처리시간 0.02초

ON HOMOMORPHISMS ON $C^*$-ALGEBRAS

  • Cho, Tae-Geun
    • 대한수학회보
    • /
    • 제22권2호
    • /
    • pp.89-93
    • /
    • 1985
  • One of the most important problems in automatic continuity theory is to solve the question of continuity of an algebra homomorphism from a Banach algebra into a semisimple Banach algebra with dense range. Many results on this subject are obtained imposing some conditions on the domains or the ranges of homomorphisms. For most recent results and references in automatic continuity theory one may refer to [1], [4] and [5]. In this note we study some properties of homomorphisms from $C^{*}$-algebras into Banach algebras. It is shown that the range of an isomorphism from a $C^{*}$-algebra into a Banach algebra contains no non zero element of the radical of B. Using this result we show that the same holds for a continuous homomorphism, hence a Banach algebra which is the image of a $C^{*}$-algebra under a continuous homomorphism is necessarily semisimple. Thus if there is a homomorphism from a $C^{*}$-algebra onto a non-semisimple Banach algebra it must be discontinuous. Also it follows that every non zero homomorphism from a $C^{*}$-algebra into a radical algebra is discontinuous. Then we make a brief observation on the behavior of quasinilpotent element of noncommutative $C^{*}$-algebras in relation with continuous homomorphisms.momorphisms.

  • PDF

가스터빈의 열차폐용 탑코팅의 내구성 향상 설계기술 (Design Technique for Improving the Durability of Top Coating for Thermal Barrier of Gas Turbine)

  • 구재민;석창성
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.15-20
    • /
    • 2014
  • Thermal barrier coating (TBC) is used to protect the substrate and extend the operating life of the gas turbine for a power plant and an aircraft. The major cause of failure of such a coating is the spallation of coating, and it results from the thermal stress between top coating and bond coating. To improve the durability of TBC system, the dense vertical cracked (DVC) coating method to insert vertical cracks is applied to a gas turbine blade. In this study, a criterion for the design of vertical crack in the DVC coating was presented using the finite element analysis.

A DENSITY THEOREM RELATED TO DIHEDRAL GROUPS

  • Arya Chandran;Kesavan Vishnu Namboothiri;Vinod Sivadasan
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.611-619
    • /
    • 2024
  • For a finite group G, let 𝜓(G) denote the sum of element orders of G. If ${\psi}^{{\prime}{\prime}}(G)\,=\,{\frac{\psi(G)}{{\mid}G{\mid}^2}}$, we show here that the image of 𝜓'' on the class of all Dihedral groups whose order is twice a composite number greater than 4 is dense in $[0,\,{\frac{1}{4}}]$. We also derive some properties of 𝜓'' on the class of all dihedral groups whose order is twice a prime number.

해저지반 성질과 매설깊이 변화에 따른 해저파이프의 충돌 특성 (Impact Characteristics of Subsea Pipeline Considering Seabed Properties and Burial Depth)

  • 신문범;서영교
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.219-226
    • /
    • 2017
  • In this study, the impact characteristics of subsea pipelines that were installed in various soil types and burial depths were evaluated by a numerical method. An impact scenario replicated a dropped ship anchor that fell vertically and impacted an installed subsea pipeline. In order to calculate the impact force through terminal velocity, FLUENT, a computational fluid dynamic program and MDM (Moving Deforming Mesh) technique were applied. Next, a dynamic finite element program, ANSYS Explicit Dynamics, was used for impact analysis between the anchor and pipeline (or, subsea if they were buried). Three soil types were considered: loose sand, dense sand and soft clay by applying the Mohr-coulomb model to the seabed. The buried depth was assumed to be 0 m, 1 m and 2 m. In conclusion, a subsea pipeline was the most stable when buried in dense sand at a depth of 2 m to prevent impact damage.

자장을 이용한 이온화율 증대형 삼극형 BARE에서 이온화율의 증대경향과 QMS를 이용한 이온의 에너지 분포 측정 (Measurement of Ion Energy Distribution using QMS & Ionization Enhancement by usign Magnetic Field in Triod BARE)

  • 김익현;주정훈;한봉희
    • 한국표면공학회지
    • /
    • 제24권3호
    • /
    • pp.119-124
    • /
    • 1991
  • Recently, the trend of research in hard coating is concentrate on developing the process of ionization rate under low operating pressure, to get the thin film with high adhesion and dense microstructures. In this study ionization rate enhancement type PVD process using permanent magnet is developed, which enhances the ionization rate by confining the plasma suppressing the wall loss of electron. By the result to investigate the characteristic of glow discharge, the ionization rate of this process is enhanced about twice as high as that of triod BARE process (about 26%), and more dense TiN microstructures are obtained in this process. Cylindrical ion energy analyzer is made and attached in front of a quadrupole mass filter for the analysis of the energy distribution of reactive gas and activated gas ions from the plasma zone. To analyze the operation mechanism of ion energy analyzer, computer simulation is performed by calculation the electric field environment using finite element method. By these analyses of ion energy distribution of outcoming ions from the plasma zone, it is found that magnetic field enhances ion kinetic energy as well as ionization rate. The other results of this study is that the foundation of feed-back system is constructed, which automatically control the partial pressure of reactive gas. In can be possible by recording the data of mass spectrum and ion energy analysis using A-D converter.

  • PDF

고밀도 균일 안개스크린을 위한 에어로졸 유동의 최적 생성조건 (Optimal Conditions of Aerosol Flow Generation for High-density and Uniform Fog Screen)

  • 신동수;송우석;김진원;김우진;구자예
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.13-21
    • /
    • 2017
  • The fog screen is a device projecting the media to the aerosol flow field. As major parameters to generate dense and steady fog screen, shear stress, optical blockage ratio and SMD were obtained result through experiment. The micro droplet was generated by the piezo oscillation element, and the aerosol flow mixed with an air flow was sprayed into the vertical direction from the top of the fog screen through the 280 mm slot. For produce a dense, uniform fog screen, the shear effect, optical blockage ratio and SMD between aerosol and air curtain were measured. The minimum and maximum shear stress conditions were selected and it was confirmed that the optical transmission deviation of the aerosol flow field was small when the aerosol and air curtain flow rates were changed. When the aerosol and air curtain flow power were 18 V (1.51 m/s) and 24 V (2.55 m/s), respectively, under the condition of the minimum shear stress and laminar flow, the optical blockage ratios with the spray length were small, and it produced a most stable and high density uniform fog screen by injecting a constant of $10{\mu}m$ or less.

외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석 (Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method)

  • 백승훈;박시형;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

선택적 레이저 용융 공정의 공정변수 평가를 위한 용융풀 유한요소 모델 (A Finite Element Model of Melt Pool for the Evaluation of Selective Laser Melting Process Parameters)

  • 이강현;윤군진
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.195-203
    • /
    • 2020
  • Selective laser melting(SLM) is one of the powder bed fusion(PBF) processes, which enables quicker production of nearly fully dense metal parts with a complex geometry at a moderate cost. However, the process still lacks knowledge and the experimental evaluation of possible process parameter sets is costly. Thus, this study presents a finite element analysis model of the SLM process to predict the melt pool characteristics. The physical phenomena including the phase transformation and the degree of consolidation are considered in the model with the effective method to model the volume shrinkage and the evaporated material removal. The proposed model is used to predict the melt pool dimensions and validated with the experimental results from single track scanning process of Ti-6Al-4V. The analysis result agrees with the measured data with a reasonable accuracy and the result is then used to evaluated each of the process parameter set.

광전소자를 이용한 선박용 안개 경보 장치 구현 (Implementation of the Marine Fog Alarm Equipment using Photoelectric Element)

  • 김갑기
    • 해양환경안전학회지
    • /
    • 제17권3호
    • /
    • pp.265-268
    • /
    • 2011
  • 본 논문에서는 해상 안개를 감지하여 선박 운항 시 선원들이 안전 운항을 할 수 있도록 알려주는 안개 경보 장치를 설계 및 제작하였다. 개발된 안개 경보 장치는 광전소자인 적외선 LED의 발광부와 수광부를 이용하여 센서부와 송수신 장치 모듈을 통합시켰으며, 수신 감도만을 이용하여 저전력 및 소형화하였다. 제작된 장치의 실험은 시정 1km 이내로 안개발생 기준을 습도 70 %로 하고 인공의 안개를 발생시켜 기준값을 초과하면 알람이 울리는 것을 실험에서 확인하였다. 개발된 장치를 선박에 적용할 경우, 짙은 안개에 따른 안전사고에 신속히 대응 할 수 있을 것이다.

Seismic fragility assessments of fill slopes in South Korea using finite element simulations

  • Dung T.P. Tran;Youngkyu Cho;Hwanwoo Seo;Byungmin Kim
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.341-380
    • /
    • 2023
  • This study evaluates the seismic fragilities in fill slopes in South Korea through parametric finite element analyses that have been barely investigated thus far. We consider three slope geometries for a slope of height 10 m and three slope angles, and two soil types, namely frictional and frictionless, associated with two soil states, loose and dense for frictional soils and soft and stiff for frictionless soils. The input ground motions accounting for four site conditions in South Korea are obtained from one-dimensional site response analyses. By comparing the numerical modeling of slopes using PLAXIS2D against the previous studies, we compiled suites of the maximum permanent slope displacement (Dmax) against two ground motion parameters, namely, peak ground acceleration (PGA) and Arias Intensity (IA). A probabilistic seismic demand model is adopted to compute the probabilities of exceeding three limit states (minor, moderate, and extensive). We propose multiple seismic fragility curves as functions of a single ground motion parameter and numerous seismic fragility surfaces as functions of two ground motion parameters. The results show that soil type, slope angle, and input ground motion influence these probabilities, and are expected to help regional authorities and engineers assess the seismic fragility of fill slopes in the road systems in South Korea.