• Title/Summary/Keyword: denitrifying activity

Search Result 21, Processing Time 0.025 seconds

Abundance and expression of denitrifying genes (narG, nirS, norB, and nosZ) in sediments of wastewater stabilizing constructed wetlands

  • Chon, Kyongmi;Cho, Jaeweon
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • As expected, the expression of denitrifying genes in a Typha wetland (relatively stagnant compared to other ponds), showing higher nitrogen removal efficiency in summer, was affected by temperature. The abundance and gene transcripts of nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductase (norB), and nitrous oxide reductase (nosZ) genes in seasonal sediment samples taken from the Acorus and Typha ponds of free surface flow constructed wetlands were investigated using quantitative polymerase chain reaction (Q-PCR) and quantitative reverse transcription PCR (Q-RT-PCR). Denitrifying gene copy numbers ($10^5-10^8$ genes $g^{-1}$ sediment) were found to be higher than transcript numbers-($10^3-10^7$ transcripts $g^{-1}$ sediment) of the Acorus and Typha ponds, in both seasons. Transcript numbers of the four functional genes were significantly higher for Typha sediments, in the warm than in the cold season, potentially indicating greater bacterial activity, during the relatively warm season than the cold season. In contrast, copy numbers and expression of denitrifying genes of Acorus did not provide a strong correlation between the different seasons.

Diversity of Denitrifying Bacteria Isolated from Daejeon Sewage Treatment Plant

  • Lim Young-Woon;Lee Soon-Ae;Kim Seung Bum;Yong Hae-Young;Yeon Seon-Hee;Park Yong-Keun;Jeong Dong-Woo;Park Jin-Sook
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.383-390
    • /
    • 2005
  • The diversity of the denitrifying bacterial populations in Daejeon Sewage Treatment Plant was examined using a culture-dependent approach. Of the three hundred and seventy six bacterial colonies selected randomly from agar plates, thirty-nine strains that showed denitrifying activity were selected and subjected to further analysis. According to the morphological and biochemical properties, the thirty nine isolates were divided into seven groups. This grouping was supported by an unweighted pair group method, using an arithmetic mean (UPGMA) analysis with fatty acid profiles. Restriction pattern analysis of 16S rDNA with four endonucleases (AluI, BstUI, MspI and RsaI) again revealed seven distinct groups, consistent with those defined from the morphological and biochemical properties and fatty acid profiles. Through the phylogenetic analysis using the 16S rDNA partial sequences, the main denitrifying microbial populations were found to be members of the phylum, Proteobacteria; in particular, classes Gammaproteobacteria (Aeromonas, Klebsiella and Enterobacter) and Betaproteobacteria (Acidovorax, Burkholderia and Comamonas), with Firmicutes, represented by Bacillus, also comprised a major group.

Effect of Aeration on Denitrification by Ochrobactrum authropi SY509

  • Song, Seung-Hoon;Yeom, Sung-Ho;Park, Suk-Soon;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.352-356
    • /
    • 2002
  • Aeration was found to affect the biological denitrification by Ochrobactrum authropi SY509. Although cell growth was vigorous under 1 vvm of aeration and an agitation speed of 400 rpm in a 3-L jar fermentor, almost no nitrate was removed. Yet under low agitation speeds (100, 200, and 300 rpm), denitrification occurred when the dissolved oxygen was exhausted shortly af-ter the inoculation of the microorganism. Ochrobactrum authropi SY509 was found to express highly active denitrifying enzymes under anaerobic conditions. The microorganism also synthesized denitrifying enzymes under aerobic conditions (1 vvm and 400 rpm), yet their activity was only 60% of the maximum level under anaerobic conditions and the nitrate removal efficiency was merely 15%. However, although the activities of the denitrifying enzymes were inhibited in the presence of oxygen, they were fully recovered when the conditions were switched to anaerobic conditions.

Chlorine Inhibition on the Denitrifying Activity of Activated Sludge Microorganisms (활성슬러지 미생물의 탈질 활성에 대한 염소의 저해)

  • Choi, Jin-Taek;Nam, Se-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.338-343
    • /
    • 2007
  • Chlorine inhibition on the denitrifing activity of activated sludge treating dairy wastewater was investigated in this study. Filamentous bulking was caused artificially by a sudden load of feed and monitored by measuring sludge volume index. In cases of the activated sludge and bulking sludge which were contacted with chlorine as $7.5\;mgCl_2/gVSS/day$ for bulking control, the decreases of specific denitrification of $32.2{\sim}40.4%\;and\;43.5{\sim}46.5%$ were shown in comparison to the control group which was not reacted with chlorine, respectively. In continuous operation, it was observed that the removal efficiency of total nitrogen was more susceptible to chlorine than the removal efficiency of total phosphorus.

Multi-Bioindicators to Assess Soil Microbial Activity in the Context of an Artificial Groundwater Recharge with Treated Wastewater: A Large-Scale Pilot Experiment

  • Michel, Caroline;Joulian, Catherine;Ollivier, Patrick;Nyteij, Audrey;Cote, Remi;Surdyk, Nicolas;Hellal, Jennifer;Casanova, Joel;Besnard, Katia;Rampnoux, Nicolas;Garrido, Francis
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.843-853
    • /
    • 2014
  • In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.

Characterization of Membrane-bound Nitrate Reductase from Denitrifying Bacteria Ochrobactrum anthropi SY509

  • Kim Seung-Hwan;Song Seung-Hoon;Yoo Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.32-37
    • /
    • 2006
  • In this study, we have purified and characterized the membrane bound nitrate reductase obtained from the denitrifying bacteria, Ochrobactrum anthropi SY509, which was isolated from soil samples. O. anthropi SY509 can grow in minimal medium using nitrate as a nitrogen source. We achieved an overall purification rate of 15-fold from the protein extracted from the membrane fraction, with a recovery of approximately 12% of activity. The enzyme exhibited its highest level of activity at pH 5.5, and the activity was increased up to $70^{\circ}C$. Periplasmic and cytochromic proteins, including nitrite and nitrous oxide reductase, were excluded during centrifugation and were verified using enzyme essay. Reduced methyl viologen was determined to be the most efficient electron donor among a variety of anionic and cationic dyestuffs, which could be also used as an electron donor with dimethyl dithionite. The effects of purification and storage conditions on the stability of enzyme were also investigated. The activity of the membranebound nitrate reductase was stably maintained for over 2 weeks in solution. To maintain the stability of enzyme, the cell was disrupted using sonication at low temperatures, and enzyme was extracted by hot water without any surfactant. The purified enzyme was stored in solution with no salt to prevent any significant losses in activity levels.

Isolation and characterization of denitrifying bacteria, Pseudomonas sp. (탈질능을 가진 Pseudoomonas sp.의 분리 및 특성)

  • Kim, Hyun-Kuk;Kim, Sung-Koo;Lee, Byung-Hun;Suk, Keun-Hack;Kong, In-Soo
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.85-90
    • /
    • 1998
  • Pseudomonas sp. KH2-2 had the denitrifying ability adn was isolated from the denitrifier consortium in order to remove nitrogen compounds from waste water in aquaculture system. When this strain was reached stationary phase, it has the maxium denitrification activity. Denitrification activity of the isolated strain was shown the growth associated pattern. Optimal temperature for cell growth and denitrification activity was 40$\circ$C and optimal pH was 7.

  • PDF

High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake (메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성)

  • Park, Suin;Jeon, Junbeom;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.

Analysis of Species Variety and Physiological Characteristics of Denitrifying Oligotrophic Bacteria Isolated from the Specific Environment in Korea (국내 특수 생태환경의 탈질 저영양 세균의 종 다양성 및 생리적 특성 분석)

  • Lee, Chang-Muk;Weon, Hang-Yeon;Kwon, Soon-Wo;Kang, Han-Chul;Koo, Bon-Sung;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • In an effort to isolate novel bacteria for the bioremediation of over-fertilized soils, we identified 135 denitrifying cells out of 3,471 oligotrophic bacteria pools (3.9%) using a denitrification medium supplemented with potassium nitrate as the sole nitrogen source. Soil samples were taken from ecologically well-conserved areas, including a mountain swamp around the demilitarized zone (Yongneup), two ecoparks (Upo and the Mujechi bog), and ten representative islands around the Korean peninsula (Jejudo, Daecheongdo, Socheongdo, Baekryeongdo, Ulrungdo, Dokdo, Geomundo, Hongdo, Huksando and Yeonpyeongdo). All of the 135 bacteria produced nitrogen gas from the denitrification medium, and were proved to be nitrate reductase positive by API-BioLog tests. Phylogenetic analysis using 16S rDNA sequences revealed that the 135 bacteria consisted of 44 different genera. Along with the most prominent, Proteobacteria (87.4%), we identified denitrifying bacteria from Firmicutes (9.4%), Actinobacteria (2.4%), and Bacteroidetes (0.8%). Physiological analyses of the 44 representative denitrifying bacteria, under various pH levels, growth temperatures and salt stresses, revealed 12 favorable denitrifying strains for soil bioremediation.

Review of Nitrous Oxide Emission by Denitrification in Subsurface Soil Environment (심층토에 있어서 탈질화에 의한 $N_2 O$ 방출의 평가)

  • Chung Doug-Young;Jin Hyun-O;Lee Chaang-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.160-164
    • /
    • 1999
  • Subsurface environments, including the intermediate vadose zone and aquifers, may be contributing to increased atmospheric concentrations of $N_2$O. Denitrification appears to be the major source of $N_2$O in the subsurface environment. In the intermediate vadose zone, the level of denitrifying activity is dependent on the soil morphology, particularly stratified layers within the soil profile, which impede water and solute movement and create conditions favorable for denitrification. Movement of organic C from the soil surface appears to support denitrifying activity by providing an energy source and increasing the consumption of $O_2$. Denitrirication and $N_2$O production have been observed in aquifers but appear to be of greatest significance in shallow unconfined aquifers. The lack of organic C, N $O_2$, or anaerobiosis is often a limiting factor for activity but seems to be site specific. The presence of denitrifying bacteria does not appear to be a major limitation, based on published results, but the ubiquity of denitrifiers in subsurface environments needs to be confirmed. The fate of the $N_2$O produced in subsurface environments is unknown. Transport of $N_2$O by up ward diffusion, by outgassing at contacts with surface waters, and by ground water use need to be quantified to determine the contribution to atmospheric $N_2$O. Contamination of subsurface environment with N $O_3$$^{ }$ and organics has the potential for increasing the contribution to atmospheric $N_2$O by enhancing denitrification .

  • PDF