• Title/Summary/Keyword: demand control

Search Result 2,320, Processing Time 0.029 seconds

Design of Charge and Discharge Monitoring System for Secondary Batteries of Hybrid Electric Vehicle (하이브리드 전기자동차용 2차전지 충방전 모니터링 시스템 설계)

  • Lee, Jun-Ha;Lee, Kang-Ho;Choi, Jong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.157-161
    • /
    • 2010
  • Most of air pollution in a metropolis is the result of exhaust gas emissions from automotive vehicles, and the world-wide regulation against environmental pollution is becoming more strict. Moreover the demand on development and supply of an environment-friendly automobile is increasing and the market share about that is expected to grow rapidly in this time of high oil price. The secondary batteries the most important component to store the electrical energy in hybrid electric vehicle. It needs to the higher power characteristics to emit the energy instantaneous. In this paper, we proposed the system to monitor reliably the charge and discharge states of the secondary batteries for hybrid electric vehicle. The material is about SW and HW module the software and hardware module mounted on the charge and discharge system and the monitoring system to control the charge and discharge performance effectively.

Analysis on Local Governmental Role for Strengthening of Industry Security in Small and Medium-sized Businesses -Focused on Empirical Analysis of Case of Gyeonggido- (중소기업 산업보안 강화를 위한 지방정부의 역할 분석연구 -경기도 사례에 대한 실증분석을 중심으로-)

  • Park, Tae-Hyoung;Lim, Chae-Hong;Lee, Kee-O;Lim, Jong-In
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.1-16
    • /
    • 2013
  • This study analyzed on local governmental role for strengthening of industry security in small and medium-sized businesses, Focused on case of Gyeonggido. In particular, Gyunggi-do evaluates various businesses (construction for cyber security businesses and revitalization of the private security control centers) which are promoted to strengthen industrial security in the region, by targeting SME representatives in various aspects. We focused on finding what role Gyeonggido can take to meet this demand has been explored. Based on the above research result, discuss ways to maximize promotion effects about industry security's activites, and more realistic business management. Futhermore, The need for further follow-up studies are presented.

A Study on an Efficient Routing Scheme for using a priority scheme in Wireless Sensor Networks (무선 센서 네트워크 환경에서 우선순위 기법을 이용한 효율적인 경로 설정에 대한 연구)

  • Won, Dae-Ho;Yang, Yeon-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.40-46
    • /
    • 2011
  • Wireless Sensor Networks(WSNs) have shown a lot of good outcomes in providing a various functions depending on industrial expectations by deploying ad-hoc networking with helps of light loaded and battery powered sensor nodes. In particular, it is strongly requested to develop an algorithm of cross-layer control between 2-layer and 3-layer to deriver the sensing data from the end node to the sink node on time. In this paper, based on the above observation we have proposed an IEEE802.15.4 based self priority routing scheme under UC Berkely TinyOS platform. The proposed beacon based priority routing (BPR) algorithm scheme utilizes beacon periods in sending message with embedding the high priority data and thus provides high quality of service(QoS) in the given criteria. The performance measures are the packet Throughput, delivery, latency, total energy consumption. Simulation results under TinyOS Simulator(TOSSIM) have shown the proposed scheme outcome the conventional Ad hoc On-Demand Distance Vector(AODV) Routing.

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

Synthesis Technology of Functional Colloid Particles and Its Applications (기능성 콜로이드 입자의 제조기술 및 이의 응용)

  • Kang, Sung-Min;Choi, Chang-Hyung;Kim, Jongmin;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.331-340
    • /
    • 2012
  • Synthetic methods of colloids have been significantly developed in industry due to their significant demand for preparation of functional particles. Recently, dynamic/static microfluidic system has emerged as a promising route to the synthesis of the particles, providing precise control of physical and chemical properties such as size, shape, porosity, surface roughness, and surface functionality. These formed particles can be potentially used in various applications including medical diagnostics, photonic device, and biological industry. In addition, these particles provide a novel route to create new materials via their directed self-assembly, and it enable to study and predict the natural phenomenon by mimicking of the nature. Therefore, we describe recent progress for functional colloid particles and its applications.

The Digital Mock-Up Information System for New Car Development

  • Min, Sung-Ki;Lee, Chul-Woo
    • Proceedings of the CALSEC Conference
    • /
    • 1999.07a
    • /
    • pp.277-299
    • /
    • 1999
  • Since Chrysler Motor Co. had experienced the digital development system in the beginning of 1990's, most of leading automobile companies are trying to apply a digital information system for their own business process reengineering based upon concurrent engineering system from product planning phase. This is called as virtual DMU(Digital Mock-Up) system instead of the traditional PMU(Physical Mock-Up) system. By using the virtual prototype, all of the design requirements and system specifications can be checked, changed and optimized more quickly and more efficiently. This paper consists of five chapters for the DMU information system. In the 1$^{st}$ chapter, the principle of digital design system is suggested by using four basic modules such as product design module, process design module, manufacturing system design module and central control module. The basic scheme of DMU is introduced with the benefits of application in the chapter 2. In the chapter 3, a digital design process of new car development is explained with the detailed DMU design and design review processes. In the chapter 4, the practical DMU manufacturing techniques and applications are introduced as CAD/CAM analyses, DPA(Digital Pre-Assembly)reviews for development, production, operation and maintenance phases, digital tolerance analyses and digital factory analyses for assembling line simulation, automated robot welding processes, production jig & fixtures and painting process simulation. Finally, the activities of digital design support; CAS-styling, CAE-engineering and CAT-testing are summarized for design optimization in the chapter 5. As today's automobile manufactures and related business organizations are struggling to compete in the global marketplace, they are concentrating on efficient use of DMU information system to reduce the new car development cost, to have shorten the delivery schedule and to improve product design quality. To meet the demand of those automobile industries on digital information systems, the CALS(Computer aided Acquisition and Logistics Support) and EC(Electronic Commerce)initiative has been focused as a dominant philosophy in defense & commercial industries, specially automobile industries.s.

  • PDF

Arm Cortex S3C2440 Microcontroller Application for Transcranial Magnetic Stimulation's Pulse Forming on Bax Reactive Cells and Cell Death in Ischemia Induced Rats

  • Tac, Han-Ho;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.266-272
    • /
    • 2016
  • Transcranial magnetic stimulation devices has been used mainly for diagnostic purposes by measuring the functions of the nervous system rather than for treatment purposes, and has a problem of considerable energy fluctuations per repeated pulse. The majority of strokes are caused by ischemia and result in brain tissue damage, leading to problems of the central nervous system including hemiparesis, dysfunction of language and consciousness, and dysfunction of perception. Control is difficult and the size is large due to the difficulty of digitalizing the energy stored in a capacitor, and there are many heavy devices. In addition, there are many constraints when it is used for a range of purposes such as head and neck diagnosis, treatment and rehabilitation of nerve palsy, muscle strengthening, treatment of urinary incontinence etc. Output stabilization and minimization of the energy variation rate are required as the level of the transcranial magnetic stimulation device is dramatically improved and the demand for therapeutic purposes increases. This study developed a compact, low cost transcranial magnetic stimulation device with minimal energy variation of a high repeated pulse and output stabilization using a real time capacitor charge discharge voltage. Ischemia was induced in male SD rats by closing off the common carotid artery for 5 minutes, after which the blood was re-perfused. In the cerebrum, the number of PARP reactive cells after 24 hours significantly decreased (p < 0.05) in the TMS group compared to the GI group. As a result, TMS showed the greatest effect on necrosis-related PARP immuno-reactive cells 24 hours after ischemia, indicating necrosis inhibition, blocking of neural cell death, and protection of neural cells.

A Fuel Spiking Test for the Surge Margin Measurement in Gas Turbine Engines

  • Lee, Jinkun;Kim, Chuntaek;Sooseok Yang;Lee, Daesung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.380-384
    • /
    • 2004
  • A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal was superimposed on the engine controller demand and the mixed signals were used to control a fuel line servo-valve. For the superimposition, a subsystem composed of a fuel controller and a function generator was used. During the fuel spiking test, the original scheduled fuel signals and the modified signals were compared to guarantee the consistency excluding the spiking signals. The spiking signals were carefully selected to maintain the engine speed constant. The fuel spiking effects were checked by three dynamic pressure sensors. Sensors were placed before the servo-valve, after the servo-valve, and after the compressor location, respectively. The modulations of the spiking signal duration and fuel flow rate were examined to make the- operating point approach the surge region. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the real engine test, fuel spiking signals with 25~50 ㎳ of spiking signal time and 17~46 % of base fuel flow rate condition were used. The dithering signal was 5~6 ㎃ at 490 Hz. The test results showed good agreement between the fuel spiking signals and the fuel line pressure signals. Also, the compressor discharge pressure signals showed fuel spiking effects and the changes of the operating point on the compressor characteristic map could be traced.

  • PDF

A Study of an effective centralization of medical supply system. In Y University Medical Center (Y의료원의 물류 공급체계 중앙화 관리에 대한 연구)

  • Kwon, Soon-Chang;Kim, Young-Soo
    • Korea Journal of Hospital Management
    • /
    • v.4 no.1
    • /
    • pp.1-20
    • /
    • 1999
  • Since the late 1980s, there have been radical changes in the managerial environment of Y University Medical Center(YUMC). Externally, the competition among hospitals has intensified due to the establishment of universal health insurance in 1939 and the entrance of large enterprises into the health care industry in the early 1990s. In addition, government regulation of medical institution is becoming stricter. Also, consumer groups have continued to demand the respect for patient rights and improvement of the quality of medical services. Internally, the financial condition of YUMC has worsened, not only because weak control and poor mediation in its large-scale structure have made its operation inefficient, but also because the rates of increase in the prices of goods and labor have grown faster than any increases in revenues. This study on materials management at YUMC presents a way for YUMC to reduce costs and increase its productivity, thereby overcoming its financial difficulties and dealing with external pressures. This study utilized the case studies of the materials purchasing and medical supply management in the United States and the comparative analysis of management to suggest short-term and long-term alternatives for innovation in YUMC. The goals of the short-term alternatives for innovation are to centralize the purchasing and supply departments and to simplify the decision-making processes. Through these attempts, it is estimated that YUMC's costs could be reduced by $600,000 per year. In the long-term, it is necessary to consider introducing a Supply Processing Distribution(SPD) system and setting up a centralized electronic system for supply and inventory management, although it is difficult to estimate the effect of cost-cutting because of the lack of analysis data. Thus, YUMC should thoroughly analyze initial investment costs and economical efficiency generated from long-term alternatives.

  • PDF

Development of Localized Roots Type Medium-Vacuum Pump (루츠형 중진공펌프 국산화 개발)

  • Tak, Bong-Yeol;Kim, Byung-Duk;Yang, Hea-Gyeong;Han, Gi-Young;Lee, So-A
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.23-27
    • /
    • 2011
  • Due to a roots type medium vacuum pump is operated in condition of $1{\sim}10^{-3}$ torr vacuum, it could be applied for production and process of industrial parts, such as precise processing, vaporization, enrichment, separation, casting, metaling, welding, transportation. Therefore, the demand of this pump is increasing nowadays in our industrial markets of semiconductor, electric, electronic, automobile, material, environmental and transporting industries. However, the pumps are almost imported, because the domestic pumps are inferior in fields of vacuum range as under $10^{-1}$torr, relevant techniques(design, fabrication, casting, test, etc.) to the imported ones. In this study, essential parts of the development pump are designed with using of CFD and 3D decodes, FEM for analysing strength and deformation, generated heat, vibration and noise control, and are casted with using of mechanochemistry techniques for decreasing of weights, increasing of heat resistances and abrasion durability of materials for pump caing and impellers especially. Besides, in order to achieve ultimate vacuum around $10^{-3}$torr, this pump is composed of 6 stages, among which 1st stage is operated separately from remained stages. Additionally, a test rig for prototype pumps(300$m^3/h$ and 2,500$m^3/h$) is designed and procured as to apply for multi-staged rootz type vacuum pump, with modification of the test method recommended by KS B 6314 "Positive-displacement oil-sealed rotary vacuum pumps".