• 제목/요약/키워드: deletion mutants

검색결과 175건 처리시간 0.027초

포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay (In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells)

  • 류재천;김경란;최윤정
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권1호
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Byr4p, a Possible Regulator of Mitosis and Cytokinesis in Fission Yeast, Localizes to the Spindle Pole Body by its C-Terminal Domains

  • Jwa, Mi-Ri;Shin, Se-Jeong;Albright, Charles F.;Song, Ki-Won
    • BMB Reports
    • /
    • 제32권1호
    • /
    • pp.92-97
    • /
    • 1999
  • Cytokinesis and septation should be coordinated to nuclear division in the cell division cycle for precise transmission of the genome into daughter cells. byr4, an essential gene in fission yeast Schizosaccharomyces pombe, regulates the timing of cytokinesis and septation in a dosage-dependent manner. We examined the intracellular localization of the Byr4 protein by expressing byr4 as a fusion of green fluorescence protein (GFP). The Byr4 protein localizes as a single dot on the nuclear periphery of interphase cells, duplicates before mitosis, and the duplicated dots segregate with the nuclei in anaphase. The behavior of Byr4p throughout the cell cycle strongly suggests that Byr4p is localized to the spindle pole body (SPB), a microtubule organizing center (MTOC) in yeast. The presence of the Byr4 protein in the SPB is consistent with its function to coordinate mitosis and cytokinesis. We also mapped the domains of Byr4p for its proper localization to SPB by expressing various byr4 deletion mutants as GFP fusions. Analyses of the diverse byr4 deletion mutants suggest that the indirect repeats and the regions homologous to the open reading frame (ORF) YJR053W of S. cerevisiae in its C-terminus are essential for its localization to the SPB.

  • PDF

The Specific Binding Mechanism of the Antimicrobial Peptide CopA3 to Caspases

  • Ho Kim
    • 한국미생물·생명공학회지
    • /
    • 제51권3호
    • /
    • pp.243-249
    • /
    • 2023
  • We recently found that the insect-derived antimicrobial peptide CopA3 (LLCIALRKK) directly binds to and inhibits the proteolytic activation of caspases, which play essential roles in apoptotic processes. However, the mechanism of CopA3 binding to caspases remained unknown. Here, using recombinant GST-caspase-3 and -6 proteins, we investigated the mechanism by which CopA3 binds to caspases. We showed that replacement of cysteine in CopA3 with alanine caused a marked loss in its binding activity towards caspase-3 and -6. Exposure to DTT, a reducing agent, also diminished their interaction, suggesting that this cysteine plays an essential role in caspase binding. Experiments using deletion mutants of CopA3 showed that the last N-terminal leucine residue of CopA3 peptide is required for binding of CopA3 to caspases, and that C-terminal lysine and arginine residues also contribute to their interaction. These conclusions are supported by binding experiments employing direct addition of CopA3 deletion mutants to human colonocyte (HT29) extracts containing endogenous caspase-3 and -6 proteins. In summary, binding of CopA3 to caspases is dependent on a cysteine in the intermediate region of the CopA3 peptide and a leucine in the N-terminal region, but that both an arginine and two adjacent lysines in the C-terminal region of CopA3 also contribute. Collectively, these results provide insight into the interaction mechanism and the high selectivity of CopA3 for caspases.

저온 민감성 바실러스 서브틸리스 돌연변이 균주에서 glycine betaine의 저온 내성에 미치는 영향에 대한 연구 (Studies of cold resistant glycine betaine effect on cold sensitive Bacillus subtilis mutant strains)

  • 김도형;이상수
    • 미생물학회지
    • /
    • 제54권3호
    • /
    • pp.200-207
    • /
    • 2018
  • 높은 염분 농도에서 glycine betaine은 Bacillus subtilis 안으로 유입되어 세포 생장이 지속될 수 있게 한다. 뿐만 아니라 최근 연구 결과에 따르면 저온에서도 glycine betaine이 세포 생장을 지속시키는 것으로 알려져 있다. 저온에서 Bacillus subtilis의 생장을 저해시키는 세포 대사 활동으로는 세포막 운송과 단백질 합성을 들 수 있다. 세포막 구조와 관련하여 저온에서 세포막 운송에 영향을 주는 유전자들로는 bkdR과 des가 있고, 단백질 합성 과정에서 RNA helicase 유전자인 ydbR과 yqfR들은 저온 민감성을 보인다. 따라서 Bacillus subtilis 저온 민감성 유전자 결손 세포들에 대한 glycine betaine의 효과를 조사하여 저온에서의 glycine betaine 생리적 기능에 대해 알아보고자 하였다. 이 결과 glycine betaine의 존재 유무에 따라 야생형 Bacillus subtilis와 ydbR과 yqfR 결손 균주의 저온생장에 큰 차이를 보였다($T_d$차이 190~686 min). 반면에 bkdR이나 des 결손균주의 경우에는 glycine betaine 존재 유무에 따라 차이를 보이지 않았다. Glycine betaine의 전구체인 choline으로 대치하여도 저온에서의 생장은 같은 결과를 보였다. Glycine betaine의 영향이 세포막 구조와 관련이 있는 유전자 bkdR과 des 결손균주에 미치는 영향이 적은 것을 알아보기 위해 세포막에 영향을 주는 세제의 효과를 조사하였다. Triton X-100과 N-lauryl sarcosine 세제에 의해 bkdR 결손 균주가 야생형에 비해 더 영향 받는 것을 확인하였고 이는 bkdR 결손이 저온에서 막 구조를 변형하여 glycine betaine의 투과에 영향을 미치는 것으로 보인다.

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis

  • Lian, Zhao;Jiang, Jing-Bo;Chi, Shuang;Guan, Guo-Hua;Li, Ying;Li, Ji-Lun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.1977-1988
    • /
    • 2015
  • β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.

Saccharomyces cerevisiae deletion mutant의 세라마이드 생합성 (Biosynthesis of ceramide by deletion mutant of Saccharomyces cerevisiae)

  • 김세경;노용호;윤현식
    • KSBB Journal
    • /
    • 제24권1호
    • /
    • pp.25-29
    • /
    • 2009
  • Saccharomyces cerevisiae의 deletion mutant를 이용하여 ydc1, ypc1, scs7, sur1, csg2, ipt1, Icb4, Icb5, dpll의 deletion이 세라마이드의 생산에 미치는 영향을 고찰하였다. 세라마이드는 ELSD가 연결된 HPLC를 통하여 분석하였으며 ${\triangle}$ydc1 mutant의 세라마이드 생산량이 6 mg ceramide/g cell로 최대량을 나타내었으며 ${\triangle}$sur1 mutant, ${\triangle}$lcb5 mutant, ${\triangle}$dpll mutant의 경우 control로 사용한 BY4742와 비슷한 세라마이드 생산량을 나타내었고, 그 외 ${\triangle}$ypc1 mutant, ${\triangle}$scs7 mutant, ${\triangle}$csg2 mutant, ${\triangle}$ipt1 mutant, ${\triangle}$lcb4 mutant는 BY4742보다 낮은 세라마이드 생산량을 나타내었다.

RAD2 and PUF4 Regulate Nucleotide Metabolism Related Genes, HPT1 and URA3

  • Yu, Sung-Lim;Lim, Hyun-Sook;Kang, Mi-Sun;Kim, Mai Huynh;Kang, Dong-Chul;Lee, Sung-Keun
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.338-347
    • /
    • 2008
  • Yeast RAD2, a yeast homolog of human XPG gene, is an essential element of nucleotide excision repair (NER), and its deletion confers UV sensitivity and NER deficiency. 6-Azauracil (6AU) sensitivity of certain rad2 mutants revealed that RAD2 has transcription elongation function. However, the fundamental mechanism by which the rad2 mutations confer 6AU sensitivity was not clearly elucidated yet. Using an insertional mutagenesis, PUF4 gene encoding a yeast pumilio protein was identified as a deletion suppressor of rad2${\Delta}$ 6AU sensitivity. Microarray analysis followed by confirmatory RT-qPCR disclosed that RAD2 and PUF4 regulated expression of HPT1 and URA3. Overexpression of HPT1 and URA3 rescued the 6AU sensitivity of rad2${\Delta}$ and puf4${\Delta}$ mutants. These results indicate that 6AU sensitivity of rad2 mutants is in part ascribed to impaired expression regulation of genes in the nucleotide metabolism. Based on the results, the possible connection between impaired transcription elongation function of RAD2/XPG and Cockayne syndrome via PUF4 is discussed.

A Novel Oxidative Stress-inducible Peroxidase Promoter and Its Applications to Production of Pharmaceutical Proteins in Transgenic Cell Cultures

  • Lee, Ok-Sun;Park, Sun-Mi;Kwon, Suk-Yoon;Lee, Haeng-Soon;Kim, Kee-Yeun;Kim, Jae-Whune;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • 제4권4호
    • /
    • pp.143-150
    • /
    • 2002
  • A strong oxidative stress-inducible peroxidase promoter (referred to as SWPA2 promoter) was cloned from tell cultures of sweetpotato (Ipomoea batatas) and characterized in transgenic tobacco cultured cells in terms of biotechnological applications. Employing a transient expression assay in tobacco protoplasts, with five different 5'-deletion mutants of the SWPA2 promoter fused to the $\beta$-glucuronidase (GUS) reporter gene, the 1314 bp deletion mutant showed approximately 30 times higher GUS expression than the CaMV 35S promoter. The expression of GUS activity in suspension cultures of transgenic cells derived from transgenic tobacco leaves containing the -1314 bp SWPA2 promoter-GUS fusion was strongly expressed following 15 days of subculture compared to other deletion mutants, suggesting that the 1314 bp SWPA2 promoter will be biotechnologically useful for the development of transgenic cell lines engineered to produce key pharmaceutical proteins. In this respect, we developed transgenic cell lines such as tobacco (Nicotiana tabacum L. BY-2), ginseng (Panax ginseng) and Siberian ginseng (Acanthopanax senticosus) using a SWPA2 promoter to produce a human lactoferrin (hLf) and characterized the hLf production in cultured cells. The hLf production monitored by ELISA analysis in transgenic BY-2 cells was directly increased proportional to cell growth and reached a maximal level (up to 4.3% of total soluble protein) at the stationary phase in suspension cultures. The SWPA2 promoter should result in higher productivity and increased applications of plant cultured cells for the production of high-value recombinant proteins.

바실러스 서브틸리스의 fsrA small RNA에 의한 TCA 회로의 유전자 조절 (Control of Genes in TCA Cycle by fsrA Small RNA in Bacillus subtilis)

  • 이상수
    • 자연과학논문집
    • /
    • 제19권1호
    • /
    • pp.57-64
    • /
    • 2008
  • 바실러스 서브틸리스 fsrA 유전자는 대장균의 ryhB 유전자와 유사한 역할을 하는 유전자로 철 조절 유전자인 fur 유전자의 조절을 받는다. 철의 농도가 높을 때에는 ryhB 유전자의 전사가 fur에 의해 억제되지만 철의 농도가 낮아지면 세포내의 철을 보다 효율적으로 절약하기 위하여 ryhB의 전사 억제가 풀려 ryhB small RNA가 생성되고 이는 철을 함유하는 sdhCDAB (succinate dehydrogenase) 유전자의 발현을 억제한다. 본 연구에서는 바실러스에서 이에 상응하는 유전자인 fur와 fsrA의 결실 균주들을 대상으로 여러 TCA 회로의 유기산을 탄소원에서의 이들 균주들의 성장을 측정하였다. 실험 결과 대장균의 fur/ryhB와 마찬가지로 succinate를 탄소원으로 할 경우 바실러스 fur 결실 균주는 성장이 매우 적었지만 fur/fsrA 결실 균주는 정상적으로 성장하였다. 또한 succinate 이외에 citrate, fumarate의 경우도 succinate와 유사한 결과를 보이는 반면에 malate의 경우 fur나 fur/fsrA의 결실 균주들에서 성장이 큰 차이를 보이지 않았다. 이 결과 TCA 회로에서 succinate 상부에 해당하는 유전자들은 fsrA에 의해 억제되나 succinate 하부에 해당하는 유전자들은 fsrA에 의해 억제되지 않는 것으로 생각된다.

  • PDF

Identification of the Regulators Binding to the Upstream Region of glxR in Corynebacterium glutamicum

  • Subhadra, Bindu;Ray, Durga;Han, Jong Yun;Bae, Kwang-Hee;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1216-1226
    • /
    • 2015
  • GlxR is considered as a global transcriptional regulator controlling a large number of genes having broad physiological aspects in Corynebacterium glutamicum. However, the expression profile revealing the transcriptional control of glxR has not yet been studied in detail. DNA affinity chromatography experiments revealed the binding of transcriptional regulators SucR, RamB, GlxR, and a GntR-type protein (hereafter denoted as GntR3) to the upstream region of glxR. The binding of different regulators to the glxR promoter was confirmed by EMSA experiments. The expression of glxR was analyzed in detail under various carbon sources in the wild-type and different mutant strains. The sucR and gntR3 deletion mutants showed decreased glxR promoter activities, when compared with the wild type, irrespective of the carbon sources. The promoter activity of glxR was derepressed in the ramB deletion mutant under all the tested carbon sources. These results indicate that SucR and GntR3 are acting as activators of GlxR, while RamB plays a repressor. As expected, the expression of glxR in the cyaB and glxR deletion mutants was derepressed under different media conditions, indicating that GlxR is autoregulated.