References
- Hanawalt, P. C. The bases for Cockayne syndrome. Nature 405:415-416 (2000) https://doi.org/10.1038/35013197
- de Kloet, S. R. Effects of 5-fluorouracil and 6-Azauracil on the synthesis of ribonucleic acid and protein in Saccharomyces carlsbergensis. Biochem J 106:167-178 (1968) https://doi.org/10.1042/bj1060167
- Lee, S. K., Yu, S. L., Prakash, L. & Prakash, S. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription: implications for Cockayne syndrome. Cell 109:823-834 (2002) https://doi.org/10.1016/S0092-8674(02)00795-X
- Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26:231-243 (2007) https://doi.org/10.1016/j.molcel.2007.03.013
- Friedberg, E. C. & Wood, R. D. New insights into the combined Cockayne/Xeroderma Pigmentosum complex: Human XPG protein can function in transcription factor stability. Mol Cell 26:162-164 (2007) https://doi.org/10.1016/j.molcel.2007.04.002
- Umezu, K. et al. Purification and properties of orotidine-5'-phosphate pyrophosphorylase and orotidine-5'-phosphate decarboxylase from baker's yeast. J Biochem 70:249-262 (1971) https://doi.org/10.1093/oxfordjournals.jbchem.a129637
- Woods, R. A. et al. Hypoxanthine: guanine phosphoribosyltransferase mutants in Saccharomyces cerevisiae. Mol Gen Genet 191:407-412 (1983) https://doi.org/10.1007/BF00425755
- Gerber, A. P., Herschlag, D. & Brown, P. O. Extensive association of functionally and cytotopically related mRNAs with puf family RNA-binding proteins in yeast. PLOS Bio 2:0342-0354 (2004) https://doi.org/10.1371/journal.pbio.0020342
- Kennedy, B. K. et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381-391 (1997) https://doi.org/10.1016/S0092-8674(00)80219-6
- Murata, Y. & Wharton, R. Binding of Pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80:747-756 (1995) https://doi.org/10.1016/0092-8674(95)90353-4
- Wreden, C. et al. Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. Development 124:3015-3023 (1997)
- Zamore, P. D., Williamson, J. R. & Lehmann, R. The pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3:1421-1433 (1997)
- Zhang, B. et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390:477-484 (1997) https://doi.org/10.1038/37297
- Olivas, W. & Parker, R. The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast. EMBO J 19:6602-6611 (2000) https://doi.org/10.1093/emboj/19.23.6602
- Grigull, J. et al. Genome-wide analysis of mRNA stability using transcription inhibitors and microarray reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol 24:5534-5547 (2004) https://doi.org/10.1128/MCB.24.12.5534-5547.2004
- Ulbright, R. J. & Olivas, W. M. Puf1p acts in combination with other yeast Puf proteins to control mRNA stability. RNA 14:246-262 (2008) https://doi.org/10.1261/rna.847408
- Foat, B. C. et al. Profiling condition-specific, genome-wide regulation of mRNA stability in yeast. PNAS 102:17675-17680 (2005)
- Hook, B. A. et al. Two yeast PUF proteins negatively regulate a single mRNA. J Biol Chem 282:15430-15438 (2007) https://doi.org/10.1074/jbc.M611253200
- Kim, H. J. et al. mRNA capping enzyme activity is coupled to an early transcription elongation. Mol Cell Biol 24:6184-6193 (2004) https://doi.org/10.1128/MCB.24.14.6184-6193.2004
- Wind, M. & Reines, D. Transcription elongation factor SII. Bioassays 22:327-336 (2000) https://doi.org/10.1002/(SICI)1521-1878(200004)22:4<327::AID-BIES3>3.0.CO;2-4
- Nakanish, T. et al. Structure-function relationship of yeast S-II in terms of RNA polymerase II, arrest relief, and suppression of 6-azauracil sensitivity. J Biol Chem 270:8991-8995 (1995) https://doi.org/10.1074/jbc.270.15.8991
- Lacroute, F. Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J Bact 95:824-832 (1968)
- Oziet-Kalogeropoulos, O. et al. Cloning, sequencing and characterization of the Saccharomyces cerevisiae URA7 gene encoding CTP synthetase. Mol Gen Genet 231:7-16 (1991) https://doi.org/10.1007/BF00293815
- Oziet-Kalogeropoulos, O. et al. Use of synthetic lethal mutants to clone and characterize a novel CTP synthetase gene in Saccharomyces cerevisiae. Mol Gen Genet 242:431-439 (1994)
- Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241-4257 (2000) https://doi.org/10.1091/mbc.11.12.4241
- Gasch, A. P. et al. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 12:2987-3003 (2001) https://doi.org/10.1091/mbc.12.10.2987
- Nyhan, W. L. Disorders of purine and pyrimidine metabolism. Mol Gen Met 86:25-33 (2005) https://doi.org/10.1016/j.ymgme.2005.07.027
- Breton, A. et al. Lethal accumulation of Guanylic nucleotides in Saccharomyces cerevisiae HPT1-deregulation mutants. Genetics 178:815-824 (2008) https://doi.org/10.1534/genetics.107.083295
- Torres, R. J. & Puig, J. G. Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orph J Rare Dise 2:48 (2007) https://doi.org/10.1186/1750-1172-2-48
- Kumar, A. Vidan, S. & Snyder, M. Insertional mutagenesis: Transposon-insertion libraries as mutagens in yeast. Methods in Enzymology 350:219-229 (2002) https://doi.org/10.1016/S0076-6879(02)50965-4