• Title/Summary/Keyword: delay control

Search Result 3,484, Processing Time 0.027 seconds

Performance Improvement of Delay-Tolerant Networks with Mobility Control under Group Mobility

  • Xie, Ling Fu;Chong, Peter Han Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2180-2200
    • /
    • 2015
  • This paper considers mobility control to improve packet delivery in delay-tolerant networks (DTNs) under group mobility. Based on the group structure in group mobility, we propose two mobility control techniques; group formation enforcement and group purposeful movement. Both techniques can be used to increase the contact opportunities between groups by extending the group's reachability. In addition, they can be easily integrated into some existing DTN routing schemes under group mobility to effectively expedite the packet delivery. This paper is divided into 2 parts. First, we study how our proposed mobility control schemes reduce the packet delivery delay in DTNs by integrating them into one simple routing scheme called group-epidemic routing (G-ER). For each scheme, we analytically derive the cumulative density function of the packet delivery delay to show how it can effectively reduce the packet delivery delay. Then, based on our second proposed technique, the group purposeful movement, we design a new DTN routing scheme, called purposeful movement assisted routing (PMAR), to further reduce the packet delay. Extensive simulations in NS2 have been conducted to show the significant improvement of PMAR over G-ER under different practical network conditions.

Delay Analysis of Carrier Sense Multiple Access with Collision Resolution

  • Choi, Hyun-Ho;Lee, In-Ho;Lee, Howon
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.275-285
    • /
    • 2015
  • To improve the efficiency of carrier sense multiple access (CSMA)-based medium access control (MAC) protocols, CSMA with collision resolution (CSMA/CR) has been proposed. In the CSMA/CR, a transmitting station can detect a collision by employing additional sensing after the start of a data transmission and then resolve the next collision that might occur by broadcasting a jam signal during a collision detection (CD) period. In this paper, we analyze the delay of a CSMA/CR based on a generic p- persistent CSMA model and obtain the minimum achievable delay of the CSMA/CR by finding the optimal length of the CD period according to the number of contending stations. Through this delay analysis, we also investigate the throughput-delay characteristics of the CSMA/CR protocol according to various parameters. Analysis and simulation results show that the CSMA/CR has a considerably lower delay and its throughput-delay characteristic is significantly improved than the conventional CSMA/CA and wireless CSMA/CD protocols.

A Study on the Predictability of Random Time Delay of Telecontroller via Internet (인터넷을 통한 원격제어기의 임의 시간지연의 예측가능성에 대한 연구)

  • Shim, Hyun-Seung;Huh, Kyung-Moo;Kim, Jang-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.849-858
    • /
    • 2001
  • One of the important problems which should be solved in the telecontroller control is the time delay problem. In this paper, we propose a method of solving a random time delay problem using QoS(quality of service), and we show not only how to solve an unpredictable time delay problem but also how to compute a maximum time delay that could satisfy a basic assumption of many telecontroller methods. Using our proposed method, it is find that we can offer more stable time delay in telecontroller than using TCP and UDP.

  • PDF

Global Finite-Time Convergence of TCP Vegas without Feedback Information Delay

  • Choi, Joon-Young;Koo Kyung-Mo;Lee, Jin S.;Low Steven H.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • We prove that TCP Vegas globally converges to its equilibrium point in finite time assuming no feedback information delay. We analyze a continuous-time TCP Vegas model with discontinuity and high nonlinearity. Using the upper right-hand derivative and applying the comparison lemma, we cope with the discontinuous signum function in the TCP Vegas model; using a change of state variables, we deal with the high nonlinearity. Although we ignore feedback information delay in analyzing the model of TCP Vegas, the simulation results illustrate that TCP Vegas in the presence of feedback information delay shows very similar dynamic trends to TCP Vegas without feedback information delay. Consequently, dynamic properties of TCP Vegas without feedback information delay can be used to estimate those of TCP Vegas in the presence of feedback information delay.

Design of Passivity Tele-Operation System Using Fuzzy Wave Variables (퍼지 웨이브 변수를 이용한 수동성 원격 시스템 설계)

  • Park, Beom-Seok;Yoo, Sung-Goo;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.258-263
    • /
    • 2011
  • In the bilateral tele-operation system, time delay may be a critical problem. Even if system modeling error or time delay occurs, when applied to wave transformation system, the system's stability can be achieved. Using the characteristic b which is an important parameter of wave transformation, the system can display robust performance for time delay. However, since assuming and that the time delay was fixed developing a theory, a stability cannot be guaranteed about the time-varying delay. Therefore, In the paper, Therefore, in this paper, we studied for the method that controls this by applying the fuzzy algorithm which surveyed the timevarying delay characteristics and can adjust the b according to it adaptively.

Feedback stabilization of linear systems with delay in state (상태변수에 지연요소를 갖는 시스템의 안정화 방법에 관한 연구)

  • 권욱현;임동진
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 1982
  • This paper suggests easy stabilization methods for linear time-varying systems with delay in the state. While existing methods employ the function space concept, the methods introduced in this paper transform the delay systems into the non-delay systems so that the well known methods for finite dimensional systems can be utilized. Particularly the intervalwise predictor is introduced and shown to satisfy an ordinary system. Control laws stabilizing the non-delay systems satisfied by this predictor will be shown to at least pointwise stabilize the delay systems with the additional strong possibility of true stabilization. In order to combine two steps of the predictor method, first transformation and then stabilization, an intervalwise regulator problem is suggested whose optimal control laws incorporate the intervalwise predictor as an integral part and also at least pointwise stabilize the delay systems. Since the above mentioned methods render the periodic feedback gains for time invariant systems the pointwise predictor and regulator are introduced in order to obtain the constant feedback gains, with additional stability properties. The control laws given in this paper are perhaps simplest and easiest to implement.

  • PDF

Discrete-Time Output Feedback Control of Nonlinear Systems with Unknown Time-Delay : Fuzzy Logic Approach (미지의 시간지연을 갖는 비선형 시스템의 이산시간 퍼지 출력 궤환 제어)

  • 신현석;김은태;박민용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.374-378
    • /
    • 2003
  • A new discrete-time fuzzy output feedback control method for nonlinear systems with unknown time-delay is proposed. Ma et al. proposed an analysis and design method of fuzzy controller and observer and Cao et al. extend this result to be applicable fir the nonlinear systems with known time-delay. For the case of unknown time-delay, we derive the sufficient condition f3r the asymptotic stability of the equilibrium Point by applying Lyapunov-Krasovskii theorem and convert this condition into the LMI problem.

Robust control of input time delay systems by observer design (관측기 설계에 의한 시간지연 시스템의 강인한 제어)

  • 김정원;이장명
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.239-242
    • /
    • 1998
  • Most of time delay existing in industrial processes can be modeled as an input time-delay which causes a lot of difficulties. To implement a time-delay free control, loop transfer function is recovered through the direct state feedback. For the proper state feedback, and observer is designed based upon the factorization approach which is known as one of the most powerful tool for the design of various control systems. The design scheme is parctically applied for the control of a DC motro which suffers from input time-delay. Simulational results demonstrate that this new algorithm guarantess the stability of the time-delayed system, as well as performance improvement compared to the conventional PI control.

  • PDF

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.