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Global Finite-Time Convergence of TCP Vegas without Feedback
Information Delay

Joon-Young Choi, Kyungmo Koo, Jin S. Lee, and Steven H. Low

Abstract: We prove that TCP Vegas globally converges to its equilibrium point in finite time
assuming no feedback information delay. We analyze a continuous-time TCP Vegas model with
discontinuity and high nonlinearity. Using the upper right-hand derivative and applying the
comparison lemma, we cope with the discontinuous signum function in the TCP Vegas model;
using a change of state variables, we deal with the high nonlinearity. Although we ignore
feedback information delay in analyzing the model of TCP Vegas, the simulation results illustrate
that TCP Vegas in the presence of feedback information delay shows very similar dynamic trends
to TCP Vegas without feedback information delay. Consequently, dynamic properties of TCP
Vegas without feedback information delay can be used to estimate those of TCP Vegas in the

presence of feedback information delay.

Keywords: Comparison lemma, congestion control, finite-time convergence, TCP Vegas,

nonlinear systems.

1. INTRODUCTION

TCP Vegas was introduced as a TCP imple-
mentation modified from TCP Reno in [1], and
extensive experiments have been conducted to
compare the performance of Vegas with that of Reno
[1-4]. TCP Vegas was systematically analyzed and
presented as a model of discrete-time dynamic system
without feedback information delay in [5]. The TCP
Vegas model is discontinuous and highly nonlinear,
which has caused a theoretical difficulty in analyzing
the dynamic properties of TCP Vegas. A sufficient
condition for local asymptotic stability of TCP Vegas
was presented in the presence of feedback information
delay in [6], and a modified version of TCP Vegas was
proposed to improve the local stability condition by
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adding a derivative term of queuing delay to the
original TCP Vegas. The work in [6], however, was
based on an approximated model assuming the time
varying RTT(round trip time) as a constant value and
ignoring the nonlinear and discontinuous properties of
TCP Vegas dynamics, and showed only local stability
results.

Global stability issues have been studied in other
congestion control schemes and some initial results
have been reported recently in [7-12] under various
assumptions and limitations. The global asymptotic
stability of the multi-link multi-source network with
TCP Vegas sources was proved without feedback
information delay in [13], but they used approximated
models to avoid the theoretical difficulties associated
with the original discontinuous TCP Vegas.

In this paper, we consider the multi-link multi-
source network with TCP Vegas sources without
feedback information delay. We rigorously analyze a
continuous-time model of TCP Vegas with dynamics
both in sources and in links without any
approximation of the original TCP Vegas model. The
continuous-time model has high nonlinearity and
discontinuity due to a signum function in the right-
hand side of the model equation. To deal with the

- discontinuous signum function in TCP Vegas model

equations, we adopt the upper-right hand derivative
and apply the comparison lemma [14]. In addition, to
deal with the high nonlinearity in the TCP Vegas
model, we make a change of state variables. We prove
that assuming no feedback information delay, TCP
Vegas globally converges to its equilibrium point in
finite time without any other conditions.



Global Finite-Time Convergence of TCP Vegas without Feedback Information Delay 71

Although we ignore feedback information delay in
analyzing the model of TCP Vegas, the simulation
results illustrate that TCP Vegas in the presence of
feedback information delay shows very similar
dynamic trends to TCP Vegas without feedback
information delay. Consequently, the analysis results
on TCP Vegas without considering feedback
information delay are of significance in practice, and
can be used to analyze and estimate the stability and
performance of TCP Vegas in the presence of
feedback information delay.

This paper is organized as follows. Section 2
describes the multi-link multi-source network model
of TCP Vegas. Section 3 analyzes the boundedness
property of TCP Vegas. Section 4 proves the global
finite-time convergence of TCP Vegas. Section 5
provides simulation results and discussions. Section 6
makes conclusions.

2. NETWORK MODEL

We consider a network of L communication links
shared by N sources, where L<AN. Each link

indexed by / has a finite transmission capacity ¢

(1</< L) and is assumed to have infinite buffering
storage. Each source is indexed by / (1<i< N ). The
Lx N routing matrix R is defined by its (/,i)

elements:

1 if source i uses link /
77 0 otherwise.

The matrix R is assumed to be fixed and of full row
rank to prevent the network from degenerating.
Associated with the link / is the queuing delay p;(#)

and with the source i is the source rate x;().

Ignoring the feedback information delays in the
interconnection, we assume at time ¢ that the source i
observes as a feedback signal the aggregated queuing
delay in its path

a;()=> R;p()=R p(t) VI1<i<N, (1)
!

where R, is the i-th column of R and p’ =
[p1,p2,+-,pr ], and link / observes the aggregated
source rate

()= Rx(t)=R'x(t) V1<I<L, )

where R’ is the I-th row of R and x' =[x1,%,,
«-+,xy]. The RTT T;(f) is defined for each source i
as T.(t)=d; +q,(r), where d; is the constant round
trip propagation time.

A model of TCP Vegas with its associated queue
management was presented as a discrete-time
dynamic system in [5]:

1
%]

pl(t+1):|:pl(t)+_[ZRlixi(t)_cl]} ) €)

+
1
wit+1)= I:Wi (1) +——sgn (aidi - x;(D)g; (f))] ,(4)
T;@)
w; (1)
(1)
source i, «;is the congestion control parameter of

where x;{(f):=

, w;(#) is the window size of

Vegas algorithm, [z]" =max{0,z}, and sgn(z)=-1
if z<0, 0 if z=0, 1 if z>0. As in [5], the
congestion control parameters «; and f; of Vegas
algorithm are assumed to be «; = f; for simplicity.

Using the Euler’s method, the discrete-time model of
TCP Vegas (3) and (4) is transformed to a continuous-
time dynamic system:

B =i[ZR;,~x,-(r)—ch : (5)
AN n
S d. — x.(0)0,
w; = O sgn(a;d; —x;()g; (1)), (6)
where
B h ifz>0
(k) = max(0,4) ifz=0.

The corresponding equilibrium point (x:‘ , p,*) of (5)
and (6) satisfies

V1<i<N

@)
o0 vi<i<L
P

qu; =a,d;
(Z,-Rﬁx: —Cl)

and the equilibrium point turns out to be unique as
shown in the following lemma.

Lemma 1: The equilibrium point of TCP Vegas
described by (5) and (6) is unique.

Proof: See [13]. O

To facilitate the analysis, making the change of
variables in (5) and (6) as

#*
xl',

xl' -
1 a4 ®)
w;,  o;d;T; ,

Si:

and using the fact that sgn(e;d; —x;q;) =sgn(s;), we
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obtain the resulting system with the new variables X;

and s;:
5 =—9i O e L onis (1)), ©®
O Ry
. 1 4; (1)
N SN (OB 10
oo sEn () T (0) 1

Before analyzing the stability of (9) and (10), it is
necessary to consider the existence of solution of the
initial-value problem (9) and (10). Since the right-
hand sides of (9) and (10) don’t satisfy the Lipschitz
condition with respect to state variables because of the
discontinuous signum function, the existence of
solution is not guaranteed in the standard sense [14].
Fortunately, however, the discontinuity comes with
only finite jump at s,=0, and it holds that the solution
of (9) and (10) exists for any initial condition in the
sense of Filippov [15]. As another property of the
solution of TCP Vegas model, the following lemma
shows the absolute continuity of the solution and this
property will be used in the subsequent analysis.

Lemma 2: p,(#), w;(¢), X;(t), and s;{¢) developed
by (5), (6), (9), and (10) respectively are absolutely
continuous with respect to time .

Proof: This lemma holds from Theorem 1 of
Chapter 0 in [16]. O

3. BOUNDEDNESS

In this section, we investigate the boundedness
properties of x;(¢), w;(¢), q;(t), s;(¢), and p;(¢)
with respect to time ¢. First, we assume that the initial
window size w;(0)>0 for all 1<i< N, which is
justified by the slow-start phase [1], during which w;
keeps increasing until either the packet is lost
somewhere in the network or when some congestion
feedback signal arrives from the network. When that
happens, the congestion control phase takes over, at
which instant the current w; >0 is set to w;(0) for
the TCP Vegas. We now show in the following
lemma that w;(f) for all 1<i<N and p,(¢) for
all 1</<L are bounded below.

Lemma 3:

(i) w;(®) is bounded below for all >0 and for

all 1<i<N as
w,(£) > w"B = min(w,(0), a,d,)> 0. (11)

(i) p;(t)z0 forall r>0 andforall 1</<L,
Proof:

it holds that s; :L
Wi

(iy Whenever 0<w; <qd,,

a;d;T,

Ll ——mJ >0 and W; = TLsgn(si) >0, from
i i

which we have w; > min(w;(0),a;d;) >0 for all

t>0 andforall 1<i<N.

+

(i) Since p; = {i(yl - c,)} and p,;(0)=0 for
<

n
all 1</<L, itisobvious that p;(r)>0 for all
t20 andforall 1</<L. a

We now show in the following that x;(¢), w;(#),

g;(t), and s;(¢) are bounded above for all

1<i<N, and p;(t) is bounded above for all
I<I<L.
Lemma 4:
(i) x;(¢#) is bounded above for all r>0 and for all
I<i<N as

1
xl-(t)Sw,-UB =max| x;(0), 2max¢;,— |.
leRiT d,'

(ii) w;(¢) is bounded above for all +>0 and for all
1<i<N as

wi(6) < wi” o= max (w,(0), 5" (d; +1),0,d(d; + ).

(iit) g,;(¢)is bounded above for all #>0 and for all

1<i<N as
!
ma)T( R
UB . leR; UB
q; (t) < gy =maxy g; (0)’ l max w;
mine jeg!
leRiT

(iv) s;(r)is bounded above for all #>0 and for all
I<i<N as

v 1 1
i T I8 +—.
w; a;d;

s5;()<s

(v) p;(®)is bounded above for all #>0 and for all
1<I<L as

!
R
()< p,UB =max| p;(0), —max wiUB R

C; icR

where /e R,-T means that link / belongs to the

links that the source i passes through, and i R’
means that the source i belongs to the sources
that passes through the link /.

Proof: See Appendix A. |
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4. CONVERGENCE

In this section, we investigate the global finite-time
convergence of TCP Vegas described by (9) and (10).
To deal with the discontinuity in (9) and (10),. we

introduce the upper right-hand derivative DV ()
defined by

D'V (t) =lim supw
h—>0+ h

H

and the comparison lemma [14] stated as follows.
Lemma 5: Consider the scalar differential equation

u=ftu), ulty)=u,

where f (¢, u) is continuous in ¢ and locally Lipschitz
inu, forall +=0 and all weJ cR. Let [£,7)(T
could be infinity) be the maximal interval of existence
of the solution u(#), and suppose u(¢t)eJ for all

telty,T). Let w(f) be a continuous function whose

upper right-hand derivative D'V (r) satisfies the
differential inequality

DY) < f(t, (), v(ty) <u

with v(t)eJ for all fe[#),T). Then, v(¢)<u(f)
forall re{t),T).

The following theorem shows that TCP Vegas
described by (9) and (10) is globally finite-time
convergent, and x;(#) and p;(¢#) converge to their
equilibrium points in finite time with any initial
condition.

Theorem 1: TCP Vegas (9) and (10) is globally

finite-time convergent, that is, x;(¢) for all 1<i

<N and p;(t) for all 1<!<L converge to their

equilibrium points in finite time.
Proof: We consider a Lyapunov function candidate

N L
V(s,;c)=§a,. ‘si‘+%lzci(lec)2, (12)

=1 %

which is absolutely continuous from Lemma 2 and
bounded by Lemma 4 for all #>0. Note that the
continuity of (12) with respect to time 7 is a necessary
condition to apply the comparison lemma and we can
choose the set J — R in the comparison lemma such
that V(t)eJ for all >0 because of the
boundedness of J{(r). Equation (12) is not
differentiable with the standard derivative when
s; =0, but even when s; =0, we can calculate the
upper right-hand derivative of (12) along the
trajectories of (9) and (10):

DV (s,%)
N S8;8; L 1\ pl 2
= oL |+Y —(RX|R %
Slet ga e
=3 s sty |+ 3 (14
i=1 zT;' 7; =1
:—i i+£sgn(s-) +§: EL:R,-p, X;
purd QT 1 o Y)oa\a l
N . N
=2 G+ Tsan(sy) [+ Y gk
=\ Wil 4 i=1
N .
-2 L Lsan(s)
= 17 H

. N 2]
1 1
== - ]
N a N .. 2
==Y | = |-YZL(RTp
Zl wiT; ZTT,-( 7)
N N
-S| | B
i=1 wiT;' i=1 71
N .
<X =) (13)

where the last inequality is derived by using

T

i=1"i
wi(t) < wl®

the inequality

o

)
S\W T ) S W (gY +d)

N
pT {ZﬁRiRZ-T J p=>0. On the other hand, since

B

and g;(1)< qu by Lemma 4, we have

=e>0 (14)

1

from which we obtain the differential inequality
DV (s,X)<-=.
Applying the comparison lemma, we achieve that
V(s(0),%(1)) <V (5(0),%(0)) - et, (15)
which implies that ¥V (s,X) reaches zero before or at

V(s(O), JZ(O))
£

time ¢ = [14,p.553]. V(s,X)=0 implies

a set of equations described with the variables x;
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and g¢;:s5; =0, that is, xq;=a;d; for 1<i<N

1

and R'z= ZR,,-x,- —¢; =0 for 1</<L, which are
i

identical to (7). Consequently, it is proved by Lemma
1 that x;(¢r) for 1<i<N and p;(¢#) for 1<I<L

converge to their equilibrium points in finite time. [
It is worth while to take a close look at how the
congestion control parameter a; affects the
performance of TCP Vegas. It is shown from (7) that
the equilibrium points of w; and T;(=d; +¢;) in
(13) increase as g; increases, which implies that the
Oéi and ﬁ[: %J in (13) decrease in the
w; T; T i

steady state as q; increases. Therefore, the sizes of
negative terms in (13) decrease as g; increases, and it
is concluded that the convergent time of TCP Vegas
lengthens as a; increases, which will be illustrated in
the simulation section. Note, however, that an
extremely small ¢; may cause sensitivity to the
measurement noise because the queuing delay, the
feedback information to be measured at each source,

has the equilibrium point proportional to a;.

terms

5. SIMULATION

In this section, we present the simulation results to
illustrate the global finite-time convergence of TCP
Vegas by using both MATLAB and ns-2 network
simulator. We simulate TCP Vegas described by (9)
and (10) without feedback information delay using
MATLAB, and simulate TCP Vegas in the presence
of feedback information delay with ns-2 simulator.

We conduct the simulation with two sets of
scenarios, denoted by Scenario 1 and 2. Scenario 1
and 2 simulate a multi-link multi-source network that
consists of two links and four heterogeneous sources
as shown in Fig. 1. Each source transfers FTP packets
to its counterpart with a packet size of 1KB. Link [ is
shared by source 1, 2, and 3 and has a capacity of
50pkts/ms; link 2 is shared by source 1 and 4 and has
a capacity of 30pkts/ms. Source 1 sends packets
through both link 1 and 2, and has a round trip latency
of 50ms. The round trip latencies of source 2, 3, and 4
are 10ms, 20ms, and 20ms, respectively. The routers
maintain a FIFO queue with a capacity of 20000pkts.
We set the congestion control parameter as follows:
a=3pkts/RTT in Scenario 1, «=6pkts/RTT in
Scenario 2, and a=/£1in ns-2.

Table 1 and 2 summarize the calculated equilibrium
point of each source for each scenario. Figs. 2 and 3
show the simulation results of Scenario 1 and 2,
respectively, where the solid lines indicate the #s-2
results and the broken lines indicate the MATLAB
results. The results from MATLAB (broken lines) in
Figs. 2 and 3 show that TCP Vegas modeled by (9)

source 1
source? ) { ’\-j\
source3 source4

Fig. 1. Network topology.

Table 1. Scenario 1: Equilibrium points.

=50 d Window | Sending | Queuing

=30 Size rate delay

a=3 ™) (ki) | (pkts/ms)| (ms)
Source 1| 50 1076 18.53 8.09
Source 2| 10 135 10.49 2.86
Source 3| 20 480 20.98 2.86
Source 4| 20 289 11.47 5.23

Table 2. Scenario 2: Equilibrium points.

=50 J Window | Sending | Queuing

;=30 Size rate delay

a=6 | okis) | (pktsims) | (ms)
Source 1| 50 1226 18.53 16.18
Source2| 10 165 10.49 5.72
Source 3| 20 540 20.98 5.72
Source 4| 20 349 11.47 10.46

and (10) converges to the calculated equilibrium point
in finite time irrespective of the homogeneity of
network sources. Moreover, ns-2 simulation results in
Figs. 2 and 3 verify that TCP Vegas, even in the
presence of feedback information delay, follows the
similar trend to the model without feedback
information delay. Consequently, the simulation
results illustrate that, even in the presence of feedback
information delay, TCP Vegas globally converges in
finite time to its equilibrium point.

Regarding how the congestion control parameter
o affects the performance of TCP Vegas, it is shown
from Figs. 2 and 3 that the convergent time increases
as the parameter o increases.

6. CONCLUSIONS

Considering a multi-link multi-source network with
TCP Vegas sources without feedback information
delay, we analyze the dynamic properties of TCP
Vegas based on a continuous-time model without any
approximation of the model, namely, keeping the high
nonlinearity and discontinuous signum function of
TCP Vegas model. We prove that assuming no
feedback information delay, TCP Vegas is globally
finite-time convergent to its equilibrium point. As
illustrated in the simulation results, the dynamic
behavior of TCP Vegas in the presence of feedback
information delay shows similar phase to that of TCP
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Vegas without feedback information delay. This
observation presents a significance that dynamic
properties of TCP Vegas without feedback
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information delay can be used to estimate those of
TCP Vegas in the presence of feedback information

delay.
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As a future work, we will consider establishing a
method to obtain an accurate and useful estimate of
the finite convergence time of TCP Vegas by using
only a priori available system information.

APPENDIX A
Proof of Lemma 4
Proof: (i) Assume that there exists an unbounded

x;(t) among 1<i<N and derive a contradiction.
Since x;(f) is unbounded, there exists a #, >0 for
every K >0 suchthat x;(z;)>K. If we chooseak
such that K >x;(0), then, x;(r) being continuous
from Lemma 2, there exists a t; 20 such that
xi(t;)=K and x;(1)=K for all te[t[*{,tK]. Now
choose a K such that

K >max| x;(0), 2maxc,, L . (16)
leRiT d,-

Since xi(t)2K>2ma>T<cl for all te[t;,tK],
leR;

pi(t) =l(J’1(f)—Cz)2i(xi(’)‘cl) >1
Cl Cl

for all te[t;,tK] and leR,-T, and since q,.=pr,

§;(t) >1 Ve e[ry,tx]. (17)
On the other hand, note from (9) that
. g; (1) 1
i) == w0+ . sgn(s;(0))
(18)

1 [, 1
< —%£qi(t)x,~(t) —d—l] Vt>0.

Since ¢;(f)>1 for all fety,tx] from (17) and

x,.(t)zk>di for all re[ty,ix] from (16), then
i

(18) yields

. 1 (.1 1) |
xi(t)S—m(l'Z—z]—o (19)

for all te[t;,tK]. But this contradicts the fact that
x(t)=K and x;(t) is bounded above by K for all
t>0 andforall 1<i<N.

(if) Assume that there exists an unbounded w;(r)
among 1<i<N and derive a contradiction. Since
w;(¢) 1is unbounded, there exists a #; >0 for every
K > 0 such that w;(tx) > K. If we choose a X such

that K >w;(0), then, w;(r) being continuous from
Lemma 2, there exists a t;( 20 such that
w(t)=K and w()=K for all relig,txl.
Now choose a X such that

K>max(w,~(0), inB (d,-+1), a,»d,-(d,-+1)), (20)

where x,~UB is an upper bound of x;(¢), which was

shown in (7). From the definition of x;(f), we have

.(,)Jﬁ_d.

4 . Vielty.tel, @21
x; (t)

which implies that
N
q; (1) 2%(@ +1)—d; >(d; +1)-d; =1 (22)
for all 7e[tg,tx] because w;(r) =K >x"?(d; +1)
for all te[t;(,tK] from (20). On the other hand,
noting that w,(r) > a;d;(d; +1) for all telty,ix]

from (20) and LD __ 9O 1
T(0) di+q; () (d;+1)

telty.ix] from (22), we have

for all .

5:(0) __ 1 4@
w; () ad T, (1)

] 1
< ad;(d; +1)  a;d;(d; +1)

for all te[tz,lK], and,

o (1) = —_son (s,
Wi (f) = o sgn(s;(N)<0

for all te[t;,t,(]. But this contradicts the fact that
wi(tg)>K for all relry.ix] and w() s
bounded above by K for all >0 and for all
I<i<N.

(iii) Assume that there exists an unbounded ¢;(¥)
among 1<i<N and derive a contradiction. Since
g;(t) is unbounded, there exists a 7, 20 for every

K >0 such that ¢, (g )> K. If we choose an K such
that K >g;(0), then, ¢;(f) being continuous from
Lemma 2, there exists a t} 20 such that

q,‘(t,*()zK and ¢;(r)=K for all te[t;,tK]. Now
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choose an K such that

e
leR;
K >max| ¢;(0), ! max WIUB ,
maxc; jeR’
1eR}
where w,-U B is the upper bound of w;(¢) as shown

in (ii) and |Rl| is the number of users passing
through link /. Then we obtain

ailk)= 2 i{Z%'ClJ

which contradicts the fact' that ¢;(rf)2K for all

te [t’;( ,tx] and g;(¢) is bounded above by K for all

t20 andforall 1<i<N.
(iv) From the definition of s{), we obtain

Isil=L——LSL+| 9i |$ 1B+ !
w o adiT| |w ’aidiTi| w; o;d;
where w,»LB is the lower bound of w;(#) as shown

in (i) of Lemma 3.
(v) Assume that there exists an unbounded p(¢)
among 1</<[L and derive a contradiction. Since

p;(t) is unbounded, there exists a f,, >0 for every
M >0 such that p;(#),)> M. If we choose an M
such that M > p;(0), then p;(f) being continuous
from Lemma 2, there exists a tL >0 such that

p(6)=M and p()=M for all te[ty,ty]-
Now choose an M such that

!
|
M >max| p;(0) —maxwl-UB ,

< ieR!
where wl-UB (for all 1<i< N ) is the upper bound of

w;(¢) as shown in (ii) and |Rl | is the number of
users passing through link /. Then we obtain

p,(rL>=i(Z%—c1]

C .
I\ ieRr! i

UB
1 w;
<— L —¢ <0,
[Z 7 1]

C
I\ ier!

*
1=ty

which contradicts the fact that p;(r)=M for all

te[t;,,,tM] and p;(¢f) is bounded above by M for
all t1>0 andforall 1</<L. O
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