• Title/Summary/Keyword: delay bound

Search Result 194, Processing Time 0.02 seconds

A study on Improving Latency-Optimized Fair Queuing Algorithm (최적 레이턴시 기반 공정 큐잉 방식의 개선에 관한 연구)

  • Kim, Tae-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.83-93
    • /
    • 2007
  • WFQ (Weighted Fair Queuing) is the most popular fair queuing algorithm, but it had the inherent drawback of a poet bandwidth utilization, particularly under the traffic requiring a low rate but tight delay bound such as internet phone. It was recently identified that the poor utilization is mainly due to the non-optimized latency of a flow and then LOFQ(Latency-Optimized Fair Queuing) to overcome the drawback was introduced. In this paper, we improve the performance of LOFQ by introducing an occupied resource optimization function and reduce the implementation complexity of recursive resource transformation by revising the transformation scheme. We also prove the superiority of LOFQ over WFQ in terms of utilization. The simulation result shows that the improved LOFQ provides $20{\sim}30%$ higher utilization than that in the legacy LOFQ.

  • PDF

Bandwidth Utilization in Latency-Optimized Fair Queuing Algorithm (최적 레이턴시 기반 공정 큐잉 알고리즘의 대역폭 이용도)

  • Kim, Tae-Joon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.155-162
    • /
    • 2007
  • WFQ (Weighted Fair Queuing) is the most popular fair queuing algorithm, but it had the inherent drawback of a poor bandwidth utilization, particularly under the traffic requiring a low rate but tight delay bound such as internet phone, It was recently identified that the poor utilization is mainly due to non optimized latency of a flow and then LOFQ(Latency-Optimized Fair Queuing) to overcome the drawback was introduced, LOFQ was also improved through introducing an occupied resource optimization function and the implementation complexity of recursive resource transformation was reduced with revising the transformation scheme. However, the performance of LOFQ has been evaluated by means of simulation, so that there are some difficulties in evaluating the performance in the terms of the accuracy and evaluation time, In this paper, we develop how to analytically compute the bandwidth utilization in LOFQ.

Reclaimer Control: Modeling , Parameter Estimation, and a Robust Smith Predictor Design (원료채집기의 제어: 모델링, 계수추정, 견실한 스미스 예측기의 설계)

  • Kim, Sung-Hoon;Hong, Keum-Shik;Kang, Dong-Hunn
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.923-931
    • /
    • 1999
  • In this paper, a modeling and a robust time-delay control for the reclaimer are investigated. Supplying the same amount of a raw material throughout the reclamation process from the raw yard to a sinter plant is important to keep the quality of the molten steel uniform in blast furnaces. As the actual parameter values of the reclaimer are not available, the boom rotational dynamics are modeled as a second order differential equation with unknown coefficients. The unknown parameters in the nominal model are estimated using a recursive estimation method. Another important factor in the control design of the reclaimer is the large time-delay in output measurement. Assuming a multiplicative uncertainty, that accounts for both the unstructured uncertainty neglected in the modeling and the structured uncertainty contained in the parameter estimation, a robust Smith predictor is designed. A robust stability criterion for the multiplicative uncertainty is also derived. Following the work of Goodwin et al. [4], a quantifying procedure of the multiplicative uncertainty bound, through experiments , is described. Experimental and simulation results are provided.

  • PDF

The Design of a Ultra-Low Power RF Wakeup Sensor for Wireless Sensor Networks

  • Lee, Sang Hoon;Bae, Yong Soo;Choi, Lynn
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.201-209
    • /
    • 2016
  • In wireless sensor networks (WSNs) duty cycling has been an imperative choice to reduce idle listening but it introduces sleep delay. Thus, the conventional WSN medium access control protocols are bound by the energy-latency tradeoff. To break through the tradeoff, we propose a radio wave sensor called radio frequency (RF) wakeup sensor that is dedicated to sense the presence of a RF signal. The distinctive feature of our design is that the RF wakeup sensor can provide the same sensitivity but with two orders of magnitude less energy than the underlying RF module. With RF wakeup sensor a sensor node no longer requires duty cycling. Instead, it can maintain a sleep state until its RF wakeup sensor detects a communication signal. According to our analysis, the response time of the RF wakeup sensor is much shorter than the minimum transmission time of a typical communication module. Therefore, we apply duty cycling to the RF wakeup sensor to further reduce the energy consumption without performance degradation. We evaluate the circuital characteristics of our RF wakeup sensor design by using Advanced Design System 2009 simulator. The results show that RF wakeup sensor allows a sensor node to completely turn off their communication module by performing the around-the-clock carrier sensing while it consumes only 0.07% energy of an idle communication module.

A Study on the Brand-based Warehouse Management in Online Clothing Shops (온라인 쇼핑몰의 브랜드 중심 창고관리 기법에 대한 연구)

  • Song, Yong-Uk;Ahn, Byung-Hyuk
    • Journal of Information Technology Applications and Management
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2011
  • As the sales volume of online shops increases, the job burden in the back-offices of the online shops also increases. Order picking is the most labor-intensive operation among the jobs in a back-office and mid-size pure click online shops are experiencing the time delay and complexity in order picking nowadays while fulfilling their customers' orders. Those warehouses of the mid-size shops are based on manual systems, and as order pickings are repeated, the warehouses get a mess and lots of products in those warehouses are getting missing, which results in severe delay in order picking. To overcome this kind of problem in online clothing shops, we research a methodology to locate warehousing products. When products arrive at a warehouse, they are packed into a box and located on a rack in the warehouse. At this point, the operator should determine the box to be put in and the location on the rack for the box to be put on. This problem could be formulated as an Integer Programming model, but the branch-and bound algorithm to solve the IP model requires enormous computation, and sometimes it is even impossible to get a solution in a proper time. So, we relaxed the problem, developed a set of heuristics as a methodology to get a semi-optimum in an acceptable time, and proved by an experiment that the solutions by our methodology are satisfactory and acceptable by field managers.

Improvement of MAC Protocol to Reduce the Delay Latency in Real-Time Wireless Sensor Networks (실시간 무선 센서 네트워크에서 전송 지연 감소를 위한 MAC 개선 방안)

  • Jang, Ho;Jeong, Won-Suk;Lee, Ki-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.600-609
    • /
    • 2009
  • The traditional carrier sense multiple access (CSMA) protocol like IEEE 802.11 Distributed Coordination Function (DCF) does not handle the constraints adequately, leading to degraded delay latency and throughput as the network scales are enlarged. We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is like the randomized CSMA protocol, but unlike previous legacy protocols, it does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, we carefully decide to select a fixed-size contention window with non-uniform probability distribution of transmitting in each slot. We show that the proposed method can offer up to severaansimes latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely using network simulation package,caS-2. We finally show that proposed MAC scheme comes close to meet bounds on the best latency being achieved by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to delay latency.

Accuracy Enhancement for UWB Indoor Positioning Using Ray Tracing (광선 추적법에 의한 초광대역 실내 위치인식의 성능 개선 방법)

  • Jo, Yung-Hoon;Lee, Joon-Yong;Ha, Dong-Heon;Kang, Shin-Hoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.921-926
    • /
    • 2006
  • The Presence of a line-of-sight(LoS) blockage can degrade the UWB positioning accuracy for two reasons. Firstly, it makes estimation of the time of arrival(ToA) of the direct path signal difficult by complicating the multipath structure of the propagation channel. Secondly, the higher dielectric constant of the LoS blocking material than that of free space introduces excess propagation delay which will bias the range estimation. In this paper, methods based on ray tracing to reduce the ranging error resulting from the second reason are Posed. We take two different approaches; a statistical approach and a map-aided method. In the statistical approach, we establish a conditional distribution of the excess propagation delay caused by LoS blockages using a ray tracing technique. The lo6wer bound of the ranging performance based on this model is estimated. Ine ray tracing method is also used for the map-aided ToA positioning approach. UWB propagation measurement data taken in an office environment is used to examine the performance of this method.

Unified Model for Performance Analysis of IEEE 802.11 Ad Hoc Networks in Unsaturated Conditions

  • Xu, Changchun;Gao, Jingdong;Xu, Yanyi;He, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.683-701
    • /
    • 2012
  • IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows.

A Near Optimal Data Allocation Scheme for Multiple Broadcast-Channel Environments (다중 방송 채널 환경을 위한 유사 최적화 데이터 할당 기법)

  • Kwon, Hyeok-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • Broadcast-based data dissemination has become a widely accepted approach of communication in the mobile computing environment. However, with a large set of data items, the expected delay of receiving a desired data increases due to the sequential nature of the broadcast channel. This paper explores the issue of designing proper data allocation on multiple broadcast channels to reduce this wait time, and proposes a new data allocation scheme named near optimal data allocation(NODA). The proposed scheme first partitions all data items in K group based on the theoretical lower-bound of the average expected delay to determine data items which each broadcast channel has to broadcast. Then, NODA further partitions each group of data items in B groups using extended dynamic programming algorithm to broadcast data items allocated on the same broadcast channel in different frequencies. The proposed scheme is capable of minimizing the average expected delay time since it can broadcast data items allocated on the same channel reflecting their popularities.

A slide reinforcement learning for the consensus of a multi-agents system (다중 에이전트 시스템의 컨센서스를 위한 슬라이딩 기법 강화학습)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.226-234
    • /
    • 2022
  • With advances in autonomous vehicles and networked control, there is a growing interest in the consensus control of a multi-agents system to control multi-agents with distributed control beyond the control of a single agent. Since consensus control is a distributed control, it is bound to have delay in a practical system. In addition, it is often difficult to have a very accurate mathematical model for a system. Even though a reinforcement learning (RL) method was developed to deal with these issues, it often experiences slow convergence in the presence of large uncertainties. Thus, we propose a slide RL which combines the sliding mode control with RL to be robust to the uncertainties. The structure of a sliding mode control is introduced to the action in RL while an auxiliary sliding variable is included in the state information. Numerical simulation results show that the slide RL provides comparable performance to the model-based consensus control in the presence of unknown time-varying delay and disturbance while outperforming existing state-of-the-art RL-based consensus algorithms.