• Title/Summary/Keyword: degenerate parabolic equation

Search Result 14, Processing Time 0.015 seconds

A VERY SINGULAR SOLUTION OF A DOUBLY DEGENERATE PARABOLIC EQUATION WITH NONLINEAR CONVECTION

  • Fang, Zhong Bo
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.789-804
    • /
    • 2010
  • We here investigate an existence and uniqueness of the nontrivial, nonnegative solution of a nonlinear ordinary differential equation: $$[\mid(w^m)]'\mid^{p-2}(w^m)']'\;+\;{\beta}rw'\;+\;{\alpha}w\;+\;(w^q)'\;=\;0$$ satisfying a specific decay rate: $lim_{r\rightarrow\infty}\;r^{\alpha/\beta}w(r)$ = 0 with $\alpha$ := (p - 1)/[pd-(m+1)(p-1)] and $\beta$:= [q-m(p-1)]/[pd-(m+1)(p-1)]. Here m(p-1) > 1 and m(p - 1) < q < (m+1)(p-1). Such a solution arises naturally when we study a very singular solution for a doubly degenerate equation with nonlinear convection: $$u_t\;=\;[\mid(u^m)_x\mid^{p-2}(u^m)_x]_x\;+\;(u^q)x$$ defined on the half line.

ON SOLVABILITY OF A CLASS OF DEGENERATE KIRCHHOFF EQUATIONS WITH LOGARITHMIC NONLINEARITY

  • Ugur Sert
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.565-586
    • /
    • 2023
  • We study the Dirichlet problem for the degenerate nonlocal parabolic equation ut - a(||∇u||2L2(Ω))∆u = Cb ||u||βL2(Ω) |u|q(x,t)-2 u log |u| + f in QT, where QT := Ω × (0, T), T > 0, Ω ⊂ ℝN, N ≥ 2, is a bounded domain with a sufficiently smooth boundary, q(x, t) is a measurable function in QT with values in an interval [q-, q+] ⊂ (1, ∞) and the diffusion coefficient a(·) is a continuous function defined on ℝ+. It is assumed that a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or becomes singular as ||∇u(t)||2 → 0. For both cases, we show that under appropriate conditions on a, β, q, f the problem has a global in time strong solution which possesses the following global regularity property: ∆u ∈ L2(QT) and a(||∇u||2L2(Ω))∆u ∈ L2(QT ).

Non-Similarity Solution for Two-Dimensional Laminar Jet (이차원 층류제트를 위한 비 상사해)

  • 이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.150-155
    • /
    • 1994
  • An Approximate solution for plane two-dimensional incompressible laminar jet issuing from a finite opening with arbitrary initial profile into the same ambient fluid is proposed. For an arbitrary initial velocity profile, the problem is generated from the well known similarity solution for the jet of infinitesimal opening and provides good approximations in the region where the similarity solution cannot be used as an approximation. The asymptotic behavior of this solution is investigated and it is shown that, as goes downstream, the present solution approachs the similarity solution.

ROLLING STONES WITH NONCONVEX SIDES II: ALL TIME REGULARITY OF INTERFACE AND SURFACE

  • Lee, Ki-Ahm;Rhee, Eun-Jai
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.585-604
    • /
    • 2012
  • In this paper we consider the evolution of the rolling stone with a rotationally symmetric nonconvex compact initial surface ${\Sigma}_0$ under the Gauss curvature flow. Let $X:S^n{\times}[0,\;{\infty}){\rightarrow}\mathbb{R}^{n+1}$ be the embeddings of the sphere in $\mathbb{R}^{n+1}$ such that $\Sigma(t)=X(S^n,t)$ is the surface at time t and ${\Sigma}(0)={\Sigma}_0$. As a consequence the parabolic equation describing the motion of the hypersurface becomes degenerate on the interface separating the nonconvex part from the strictly convex side, since one of the curvature will be zero on the interface. By expressing the strictly convex part of the surface near the interface as a graph of a function $z=f(r,t)$ and the non-convex part of the surface near the interface as a graph of a function $z={\varphi}(r)$, we show that if at time $t=0$, $g=\frac{1}{n}f^{n-1}_{r}$ vanishes linearly at the interface, the $g(r,t)$ will become smooth up to the interface for long time before focusing.