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A VERY SINGULAR SOLUTION OF
A DOUBLY DEGENERATE PARABOLIC EQUATION

WITH NONLINEAR CONVECTION

Zhong Bo Fang

Abstract. We here investigate an existence and uniqueness of the non-
trivial, nonnegative solution of a nonlinear ordinary differential equation:

[|(wm)′|p−2(wm)′]′ + βrw′ + αw + (wq)′ = 0

satisfying a specific decay rate: limr→∞ rα/βw(r) = 0 with α := (p −
1)/[pq− (m+1)(p−1)] and β := [q−m(p−1)]/[pq− (m+1)(p−1)]. Here
m(p− 1) > 1 and m(p− 1) < q < (m + 1)(p− 1). Such a solution arises
naturally when we study a very singular solution for a doubly degenerate
equation with nonlinear convection:

ut = [|(um)x|p−2(um)x]x + (uq)x

defined on the half line.

1. Introduction

In this paper, we consider a one dimensional doubly degenerate equation
with nonlinear convection term

(1.1) ut = [|(um)x|p−2(um)x]x + (uq)x, (x, t) ∈ R+ × R+

with Neumann boundary condition

(1.2) ux(0, t) = 0,

where m(p− 1) > 1, q > m(p− 1).
Equation (1.1) (sometimes called the non-Newtonian filtration equation)

arises in the study a compressible fluid flows in a homogeneous isotropic rigid
porous medium, flows of polytrophic gas and has various other applications,
see, [23], [5]. From a mathematical point of view, we note that (1.1) is a quasi-
linear equation which is nonuniform parabolic and it is doubly degenerate on
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the sets {ux = 0} and {u = 0} (if q = 1, equation (1.1) reduces to the stan-
dard doubly degenerate equation by an easy change of variables). The case
m(p − 1) > 1 occurs in slow diffusion process and 0 < m(p − 1) < 1 in fast
diffusion process (see [19] and [22] for examples).

We are mostly interested in nonnegative solutions of (1.1) having the form

(1.3) u(x, t) = t−αw(xt−β) := t−αw(r),

where α, β are positive numbers. We substitute (1.3) into (1.1) to find

(1.4) α := (p−1)/[pq−(m+1)(p−1)], β := [q−m(p−1)]/[pq−(m+1)(p−1)]

and w, as a function of r = xt−β , solves an ordinary differential equation:

(1.5) [|(wm)′|p−2(wm)′]′ + βrw′ + αw + (wq)′ = 0.

We observe that if u(x, t) solves (1.1), then the rescaled functions

(1.6) uρ(x, t) = ρ(p−1)/[q−m(p−1)]u(ρx, ρ[pq−(m+1)(p−1)]/[q−m(p−1)]t), ρ > 0

define a one parameter family of solutions to (1.1). A solution u(x, t) is said to
be self-similar when uρ(x, t) = u(x, t) for every ρ > 0. It can be easily verified
that u(x, t) is a self-similar solution to (1.1) if and only if u has the form (1.3).
We also remark that the self-similar solutions play an important role in the
study of large time behaviors of general solutions (see [16, 18] and [24]).

Every nonnegative, bounded solution of (1.5) has exactly one critical point
and since we here apply the shooting method, led to solve a more general initial
value problem

[|(wm)′|p−2(wm)′]′ + βrw′ + αw + (wq)′ = 0

for r ≥ 0 with initial conditions

(1.7) w′(0) = 0, w(0) = µ,

where µ may be any positive number.
Using the Shauder’s fixed point theorem (or Banach contraction theorem),

we find that initial value problem has an unique solution which we denote by
w(r; µ). In many cases, it turns out that the limit

(1.8) L(λ) = lim
r→∞

rα/βw(r)

exists and we distinguish between fast and slow orbits according to whether
L(λ) = 0 or not respectively. The fast orbit will bring out a very singular
solution of (1.1). The very singular solution has a stronger singularity at the
origin than the singular solution of that equation. By a singular solution we
mean a nonnegative and nontrivial solution which satisfies the equation and
vanishes outside any open neighborhood of the origin as t → 0. A singular
solution is called a very singular solution if the integral of u(x, t) over any open
neighborhood of the origin becomes unbounded as t → 0, which is equivalent
to, if u is given by (1.3),

(1.9) lim
r→∞

rα/βw(r) = 0.
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Furthermore, if 0 < β < α and a solution f of (1.5) satisfies (1.9), then
u(x, t) given explicitly by (1.3) becomes a very singular self-similar solution of
(1.1).

Our goal is to find the relation of values m, p, q and initial data µ which
insure that w(·, µ) is a fast decaying solution and to give an exact asymptotic
behavior of solutions at near infinity. More precisely, our main results include
the followings;

• If α ≤ β (i.e., q ≥ (m + 1)(p − 1)), then there not exists any fast
orbit (very singular solution) and indeed, only exists slow orbits for
any µ > 0.

• If α > β (i.e., m(p−1) < q < (m+1)(p−1)), then there exists µ1 such
that

(i) w(r; µ) is changes sign with wm(R−;µ) < 0 for µ ∈ (0, µ1).
(ii) w(r; µ) is a slow orbit and having the behavior

w(r; µ) ∼ L(µ)r−α/β

at near of infinity for µ ∈ (µ1, +∞), with L(µ) > 0.
(iii) w(r; µ1) is the only fast orbit with wm(R−;µ) = 0 and having

the interface relation

lim
r→R−

(w[m(p−1)−1]/(p−1))′(r) = −[m(p− 1)− 1]/[m(p− 1)]β1/(p−1)R1/(p−1)

for some 0 < R < ∞.

There have been many works dealing with the existence, uniqueness and
asymptotic behavior of self-similar solutions to a class of quasilinear parabolic
equations with absorption (or source, convection) term. For instance, it is
thoroughly treated on the P-Laplacian equation with absorption term;

ut = div(|∇u|p−2∇u)− uq in RN × R+

with p > 1, q > 1. For linear diffusion case(p = 2), see [3], [6], [13] for slow
diffusion case(p > 2), see [22] and [1], [16] for fast diffusion case(1 < p < 2).

Recently some authors studied (1.1) with m(p− 1) ≥ 1, q > m(p− 1). They
derived some estimates, used a suitable scaling and convergence of re-scaled
solutions to self-similar ones, and concluded that the asymptotic of general
solutions is self-similar (see [16, 17, 18, 24]). Similar arguments have been used
in the case of the multidimensional convection-diffusion equation (see [7, 8], for
examples). In addition, very singular self-similar solutions are found for the
linear diffusion equation with convection on half line under the homogeneous
Neumann boundary condition which motivated our investigation (see [2], [11],
and [20]).



792 ZHONG BO FANG

Let f = wm, λ = µm. Then the initial value problem (1.5), (1.7) is replaced
by the following problem with respect to f

(1.10)





(|f ′|p−2f ′)′ + βr(f1/m)′ + αf1/m + (fq/m)′ = 0 in r > 0
f(r) > 0
f ′(0) = 0, f(0) = λ > 0

and the condition (1.9) is replaced by

(1.11) lim
r→∞

rα/βf1/m(r; λ) = 0.

Indeed, all throughout this paper we consider the above problem with re-
spect to f and always assume that [0, R) is the maximal existence interval of
nonnegative solution of w or f.

The plan of this paper is as follows. In Section 2, we study basic properties
of f which will be useful in the proof of the main results. In Section 3, we study
the nonexistence of the very singular solution(fast orbit) when q ≥ (m+1)(p−
1). In Section 4, we study the existence changing sign solutions, fast(slow)
decaying global solutions and finding the decay rates, the interface relation
when m(p− 1) < q < (m + 1)(p− 1). In Section 5, we show that uniqueness of
the very singular solution.

2. Preliminary results

In this section we shall derive some properties of f which will be useful in
the proof of the main results.

We first show that the sign of f ′ are depending on the sign of α and f
decreases as long as it is positive, and also give the behavior of f, f ′ at near of
infinity.

Lemma 2.1. Assume that α > 0, β > 0 and λ > 0. Let f be a solutions to
(1.10) such that f > 0 on [0, R) with R possibly infinity. Then

(i) limr→R− f(r) = 0.
(ii) f ′(r) < 0 in (0, R).
(iii) limr→∞ f ′(r) = 0 when R = ∞.

Proof. We first to show that (ii).
By (1.10) we obtain (|f ′|p−2f ′)′(0) = −αλ1/m < 0. Thus, the function is

strictly decreasing for small r. Suppose that there exists first zero of f ′ is r1 such
that f(r) > 0 on (0, r1) and f ′(r1) = 0. From (1.10) one sees (|f ′|p−2f ′)′(r1) <
0, which is impossible.

Since f is strictly decreasing and f is bounded below by 0, there exists

(2.1) lim
r→R−

f(r) = l ∈ [0, λ).

We define the energy function E(r) = (p − 1)/p|f ′|p + mα/(m + 1)f (m+1)/m

and obtain
d

dr
E(r) = −(f ′)2/m(βrf (1−m)/m + qf (q−m)/m) < 0
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for r > 0. Thus, E(r) decreases monotonically to a limit and there also exists
the limit

(2.2) lim
r→R−

f ′(r) = −l1, l1 ∈ [0,∞).

In particular l1 must be zero so that f is positive for all positive r.
Next, we prove that l = 0. Suppose to the contrary l > 0. By (iii) we obtain

(2.3) lim inf
r−→∞

|f ′′(r)| = 0.

Moreover, we easy to see that

(2.4) lim
r−→∞

r(f1/m)′(r) = −α/βl1/m < 0.

Indeed, the function r(f1/m)′ is either eventually oscillates or monotone. If
monotone, clearly holds by (1.5), (2.3) and if oscillates, we choose the sequence
rj realizing the minima(or maxima) of the function r(f1/m)′, then remain holds
above result (2.4).

By (2.4) yields there exists r0 such that

(f1/m)′ < −C/r for r ≥ r0,

where C > 0, which implies that f(r) → −∞ as r → +∞, which leads to a
contradiction. ¤

By Lemma 2.1 (ii), f ′(r) < 0 in (0, R) for any λ > 0 and we find that if
R < ∞, then f(R) = 0 and f ′(R) ≤ 0. We next show that if f ′(R) = 0, then
f vanishes identically after R.

Lemma 2.2. Assume that α > 0 and λ > 0. Let f be any solution of (1.10)
with f(R) = f ′(R) = 0 for R > 0. Then f = 0 for all r ≥ R.

Proof. By convention, (1.10) is rewritten as

(2.5) (|f ′|p−2f ′)′ + βr(f1/m)′ + αf1/m + (|f |(q−m)/mf)′ = 0.

Thus, without loss of generality, we may assume that f(r) > 0 and f ′(r) > 0 for
r near R with r > R. For such r, we find easily from (2.5) that (|f ′|p−2f ′)′(r) <
0. Integrating over (R, r), we see that |f ′|p−2f ′(r) < 0, which contradict to the
assumption. ¤

3. The case β ≥ α (q ≥ 2(p − 1))

In this section, we show that there does not exist any fast orbit for the
problem (1.10) and thus no very singular solution for (1.1) when 0 < α ≤ β.

Theorem 3.1. Assume β ≥ α (q ≥ (m+1)(p−1)). For each λ > 0, let f(r; λ)
be the solution of (1.10). Then R = ∞ and lim infr→∞ rα/βf1/m(r;λ) > 0.
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Proof. We assume R < ∞ to the contrary and integrate (1.10) over (0, R) to
get

|f ′|p−2f ′(R) + (α− β)
∫ R

0

f1/m(r)dr − λq/m = 0,

which is impossible. Thus f is positive for all r ≥ 0 and R = ∞.
Moreover, we have, for r > 0,

{rα/β−1|f ′|p−2f ′ + βrα/βf1/m}′

= rα/β−1{(|f ′|p−2f ′)′ +
α/β − 1

r
|f ′|p−2f ′ + αf1/m + βr(f1/m)′}.

By (1.5), we get

{rα/β−1|f ′|p−2f ′ + βrα/βf1/m}′ = rα/β−1{α/β − 1
r

|f ′|p−2f ′ − (fq/m)′} > 0

by the condition β ≥ α and f ′ < 0. If we define the function

F (r) := rα/β−1|f ′|p−2f ′ + βrα/βf1/m,

then we see that F (0) = 0 and F (r) is strictly increasing for all r > 0. Since f
is a decreasing function, one must have lim infr→∞ rα/βf1/m(r; λ) > 0. ¤

We will see later that the limit limr→∞ rα/βf1/m(r; λ) exists for each λ > 0.
Thus we may conclude together with Theorem 3.1 that there exist slow orbits
only.

4. The case α > β (m(p − 1) < q < (m + 1)(p − 1))

In this section, we first show that the solution changes sign for small λ and
we next show that the solution becomes a slow orbit for suitably large λ. We
then find a fast orbit in-between. The slow orbits will be shown to be ordered
and the minimal one becomes the fast orbit as we have seen in many cases, see
[10], [13], [1], [19], [20] for examples.

Define the following three sets for any initial value λ > 0,

S1 = {λ > 0; R < ∞, f ′(R−, λ) < 0},
S2 = {λ > 0; R < ∞, f ′(R−, λ) = 0},
S3 = {λ > 0; R = ∞, f(r, λ) > 0}.

Obviously, there sets are disjoint and S1 ∪ S2 ∪ S3 = (0,∞).
We first show that the problem (1.10) has changes sign for “small” λ > 0.

Theorem 4.1. The set S1 6= ∅ and open.

Proof. By integrating (1.10), one has

(4.1) |f ′|p−2f ′ + βrf1/m = φ(r) := −(α− β)
∫ r

0

f1/mdr − fq/m + λq/m.

One finds easily that φ(0) = 0, φ′(r) = −(α − β)f1/m − q/mf (q−m)/mf ′, and
φ′(0) = −(α− β)λ < 0.
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Suppose that φ(r) < 0 and thus

(4.2) |f ′|p−2f ′ + βrf1/m < 0, 0 < r < r0

for some r0 to be determined later. An integration of (4.2) yields

f
m(p−1)−1

m(p−1) (r) < λ
m(p−1)−1

m(p−1) − m(p− 1)2β1/(p−1)

p[m(p− 1)− 1]
rp/(p−1).

Thus if r0 > R0 :=
(

p[m(p−1)−1]
m(p−1)2β1/(p−1) λ

m(p−1)−1
m(p−1)

)(p−1)/p

, then f must change sign
and we are done. Otherwise, we may assume that φ(r0) = 0 for some r0 ≤ R0.
From definition, we obtain f ′(r0) = −β1/(p−1)r

1/(p−1)
0 f1/[m(p−1)](r0) and

φ′(r0) = −(α− β)f1/m(r0)− q/mfq/m−1f ′(r0) ≥ 0.

Combining these, we have

0 < α− β ≤ q/mβ1/(p−1)r
1/(p−1)
0 fq/m−[(m+1)(p−1)−1]/[m(p−1)].

Since f is a decreasing solution, we also have f(r0) ≤ λ and

(4.3)
α− β ≤ q/mβ1/(p−1)

(
p[m(p− 1)− 1]

m(p− 1)2β1/(p−1)

)1/p

· λm(p−1)−1
mp +q/m−[(m+1)(p−1)−1]/[m(p−1)].

The inequality (4.3) does not hold for all sufficiently small λ, which proves the
first part of theorem. The continuous dependence of solutions on the initial
values implies that S1 is an open set. ¤

We next prove that the problem (1.10) has a global positive decaying solution
for all suitably large λ.

Lemma 4.2. Let α > β. Then for any R0 there exists λ0 such that f(r) =
f(r, λ) > 0 for 0 < r < R0 and f(R0) + |f ′(R0)|p−2f ′(R0) > 0 for all λ ≥ λ0.

Proof. We define fλ(t) = 1
λf(r, λ), t = rλδ with δ = [q−m(p+1)]

m(p−1) . Then fλ

satisfies f ′λ(0) = 0, fλ(0) = 1 and the following equation

(|f ′λ|p−2f ′λ)′ + λ−
qp−(m+1)(p−1)

m(p−1) [βt(f1/m
λ )′ + αf

1/m
λ ] + (fq/m

λ )′ = 0.

By integrating over (0, t), we obtain

|f ′λ|p−2f ′λ + λ−
qp−(m+1)(p−1)

m(p−1) (α− β)

·
∫ t

0

f
1/m
λ dτ + λ−

qp−(m+1)(p−1)
m(p−1) βtf

1/m
λ + (fq/m

λ − 1) = 0.

Since fλ is bounded by 1, for any ε > 0 there is λ0 such that whenever λ ≥ λ0,

1− ε < |f ′λ|p−2f ′λ + f
q/m
λ < 1 + ε

for t ∈ [0, qp−(m+1)(p−1)
m(p−1) − ε], which implies lemma. ¤



796 ZHONG BO FANG

We also prove the next key-observation:

Proposition 4.3. Assume that α > 0, β > 0 and λ > 0. Let f be any solution
to (1.10). Consider the function Ec(r) := cf + rf ′ for c > 0. Then

(i) If c > mα/β, then Ec(r) is eventually positive.
(ii) If c < mα/β, then Ec(r) is eventually negative.

Proof. By direct calculations and (1.10), we obtain

(4.4)
(p− 1)|f ′|p−2E′

c(r)

= (c + 1)(p− 1)|f ′|p−2f ′ − βr2(f1/m)′ − αrf1/m − q/mrf (q−m)/mf ′

and at any r = r0 for which Ec(r0) = 0 we have

(4.5)
(p− 1)|f ′|p−2E′

c(r0)

= − (c + 1)(p− 1)cp−1(f/r0)p−1 + (β/mc− α)r0f
1/m + qc/mfq/m.

Since the middle term on the right hand side of (4.5) dominates the others
for all sufficiently large r0, the sign of E′

c(r0) is only decided by the sign of
β/mc− α and thus Ec(r) becomes of the same sign eventually.

In order prove (i), we suppose that there exists r1 such that Ec(r) < 0 for
all r ≥ r1. From equation (1.10) and Lemma 2.1 (ii) we deduce that

(|f ′|p−2f ′)′ − (β/mc− α)f1/m = −β/mf1/m−1Ec(r)− (fq/m)′ > 0

for r ≥ r1. Multiplying the previous inequality by f ′ and integrating from r to
τ with r1 ≤ r ≤ τ, we have

(p− 1)/p|f ′|p(τ)− c1f
(m+1)/m(τ) ≤ (p− 1)/p|f ′|p(r)− c1f

(m+1)/m(r),

where c1 := (βc−mα)/(m+1). Letting τ →∞ and using Lemma 2.1(ii), (iii),
we get the following inequality

−f ′f−
m+1
mp ≥ c2 > 0, r ≥ r1.

Integrating the previous inequality from r1 to r ≥ r1 we obtain

mp/[m(p− 1)− 1]f [m(p−1)−1]/(mp)(r1)

−mp/[m(p− 1)− 1]f [m(p−1)−1]/(mp)(r) ≥ c2(r − r1).

Letting r →∞ we get a contradiction.
We prove (ii) similarly. Suppose that there exists r2 such that Ec(r) > 0 for

all r ≥ r2. From (1.10) and assumption,

(|f ′|p−2f ′)′ + αf1/m = − βr(f1/m)′ + αf1/m − q/mfq/m−1f ′

≤ β/mcf1/m + q/mc/rfq/m.

Since f decrease, we may rewrite this as

(4.6) (|f ′|p−2f ′)′ ≤ −c2f < c2
rf ′

c
,
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where we define c2 = αλ1/m−1 − cβ/mλ1/m−1 + cq
mr2

λq/m−1 and assume to
be positive by retaking r2. The inequality (4.6) is rewritten as (p − 1)/(p −
2)(|f ′|p−2f ′)′ ≤ −c3r for some positive constant c3 and an integration from
r = r2 to r = ∞ yields a contradiction, which completes the proof. ¤

We rewrite the problem (1.10) as the following system;

(4.7)





f ′ = |h|−(p−2)/(p−1)h
h′ = −β/mrf1/m−1|h|−(p−2)/(p−1)h

−αf1/m − q/mf (q−m)/m|h|−(p−2)/(p−1)h.

Given any δ > 0, we denote

Lδ := {(f, h) : 0 < f ≤ 1, 0 > h > −δf}
then we obtain the following lemma.

Lemma 4.4. For given δ > 0 there exists a rδ := m[δ + αδ−1/(p−1)]/β such
that Lδ is positively invariant for r > tδ. That is (f(rδ), h(rδ)) ∈ Lδ then the
orbit (f(r), h(r)) of (4.7) remains in region Lδ for all r ≥ rδ.

Proof. We shall show that given δ > 0 there exists a rδ > 0 such that if r > rδ,
then the vector field determined by (4.7) points into Lδ, except at the critical
point (0. 0). It is easy to see this fact on the top h = 0 and the line f = 1 and
it is enough to verify this only on the line h = −δf. By the system (4.7), we
have

h′

f ′

=
−β/mrf1/m−1|h|−(p−2)/(p−1)h− αf1/m − q/mf (q−m)/m|h|−(p−2)/(p−1)h

|h|−(p−2)/(p−1)h

= − β/mrf1/m−1 + αδ−1/(p−1)f [(p−1)−m]/[m(p−1)] − q/mf (q−m)/m

< − β/mrf1/m−1 + αδ−1/(p−1)f [(p−1)−m]/[m(p−1)] ≤ −δ

if r ≥ rδ := m[δ + αδ−1/(p−1)]/β. ¤

As a consequence, we can prove the existence of globally positive solutions.

Theorem 4.5. The set S3 is nonempty and open.

Proof. From Lemma 4.2, we can find r0 such that f > 0 for 0 ≤ r ≤ r0

and f(r0) + |f ′(r0)|p−2f ′(r0) > 0 for all sufficiently large λ. Thus (f(r0),
|f ′|p−2f ′(r0)) ∈ L1 and by Lemma 4.4, f is positive for all r > 0, which proves
the first part of theorem.

We next prove S3 is an open set. Set λ0 ∈ S3 and then by Proposition 4.3,
E1(r) = f + rf ′ becomes positive for all large r. Thus there exist sufficiently
large r0 such that (f(r0), |f ′|p−2f ′(r0)) ∈ L1. Then by continuous dependence
of solutions on the initial value there is a neighborhood N of λ0 such that
f(r; λ) > 0 and (f(r0;λ), |f ′|p−2f ′(r0; λ)) ∈ L1 for any (r, λ) ∈ [0, r0]×N. By
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Lemma 4.4, we deduce that the orbits remains in L1 for any r > r0, which
implies in particular that f(r, λ) > 0 for any r > r0 and λ ∈ N. Therefore,
f(r; λ) > 0 for any r > 0 and λ ∈ N and S3 is open. ¤

We are now going to find exact decay-rates for globally positive solutions.

Theorem 4.6. For any given λ > 0, let f be any solution to (1.10) such that
f > 0 for any r > 0. Then limr→∞ rα/βf1/m(r; λ) = L(λ) > 0 exists.

Proof. Step 1: By Lemma 2.1 we know that f ′(r) < 0 for r > 0 and
limr→∞ f(r) = 0, limr→∞ f ′(r) = 0. Moreover we have seen that if c < mα/β,
then Ec(r) = cf + rf ′ < 0 for all sufficiently large r, say, r > r0. We easily find
that

(4.8) f(r) ≤ f(r0)r−c, r > r0.

We also recall that if d > mα/β, then Ed(r) = df + rf ′ > 0 and thus

(4.9) −f ′(r) < df(r)/r, r > r1

for some r1 > 0.
Step 2: From (1.10), we get

(4.10)
{rα/β−1|f ′|p−2f ′ + βrα/βf1/m}′

= rα/β−1{α/β − 1
r

|f ′|p−2f ′ − (fq/m)′},

and integrating over (0, r), we see that

(4.11)
rα/β−1|f ′|p−2f ′ + βrα/βf1/m

= (α/β − 1)
∫ r

0

|f ′|p−2f ′sα/β−2ds + q/m

∫ r

0

f (q−m)/m|f ′|sα/β−1ds.

Using (4.8) and (4.9), we find that two integrals of the right hand side of
(4.11) converge and limr→∞ rα/β−1|f ′|p−2f ′ = 0. Therefore, the limit L(λ) =
limr→∞ rα/βf1/m(r; λ) exists and finite.

Step 3: We now show that L(λ) > 0. Assume that L(λ) = 0. Integrating
(4.10) over (r,∞), we have

rα/β−1|f ′|p−2f ′ + βrα/βf1/m

= (1− α/β)
∫ ∞

r

|f ′|p−2f ′sα/β−2ds− q/m

∫ ∞

r

f (q−m)/m|f ′|sα/β−1ds.

Again using (4.9), we see that L(λ) = limr→∞ rα/βf1/m(r; λ) exists and finite.
On the other hand, by (4.9),

f(r) ≥ f(r1)r−d, r > r1.

These conflictions implies that L(λ) > 0. ¤
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Remark 4.7. Obviously, the limit value L(λ) = 0 is achieved only when f has
the compact support and Proposition 4.3 and Theorem 4.6 remain true for the
case α ≤ β.

We finally show that there exists a fast orbit.

Theorem 4.8. The set S2 6= ∅ and closed. Moreover, the interface relation
holds

lim
r→R−

(f [m(p−1)−1]/[m(p−1)])′(r) = −[m(p− 1)− 1]/[m(p− 1)]β1/(p−1)R1/(p−1)

for any λ ∈ S2.

Proof. By Theorems 4.1 and 4.5, we immediately see that S2 is nonempty and
closed set. From Lemma 2.2, any solution f = f(r, λ) with λ ∈ S2 has a
compact support, say, [0, R] and f satisfies condition f(R) = 0, f ′(R) = 0.
Integrating the equation (1.10) from r to R we get

|f ′|p−2f ′(r) + βrf1/m(r) = (α− β)
∫ R

r

f1/m(s)ds− fq/m(r).

Dividing by f, we have

(4.12)
f ′|p−2f ′(r)/f1/m(r) + βr

= (α− β)
∫ R

r

f1/m(s)ds/f1/m(r)− f (q−1)/m(r).

Since f is strictly decreasing, we find that

0 ≤
∫ R

r

f1/m(s)ds ≤ f1/m(r)(R− r).

Hence

lim
r→R−

∫ R

r

f1/m(s)ds/f1/m(r) = 0.

Letting r → R− in (4.12) then we obtain

lim
r→R−

|f ′|p−2f ′(r)/f1/m(r) = −βR

and which is equivalent to the second result of theorem. ¤

In addition, we show the monotonicity of the solutions of the problem (1.10)
with respect to λ in the sense that two positive orbits do not intersect each
other.

Theorem 4.9. Assume that α > 0, β > 0 and fi are solutions of problem
(1.10) on [0, Ri) with initial data fi(0) = λi > 0, i = 1, 2, where [0, Ri) denotes
the maximal existence interval of fi and the Ri are possibly infinity. Then

λ2 > λ1 ⇒ f2(r) > f1(r) for all 0 ≤ r ≤ R := min{R1, R2}.
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Proof. Suppose contrarily that there exists R0 ∈ [0, R] such that f1(r) < f2(r)
for r ∈ [0, R0) and f1(R0) = f2(R0). We define

gk(r) := k−mp/[m(p−1)−1]f1(kr), r ∈ [0, R1/k)

for k > 0 and then gk(r) solves

(4.13)
(|g′k|p−2g′k)′ + βr(g1/m

k )′

+ αg
1/m
k + k[pq−(m+1)(p−1)]/[m(p−1)−1](gq/m

k )′ = 0.

By Lemma 2,1 we know that f1 is strictly decreasing on [0, R1) and so gk

is strictly decreasing with respect to k. In particular, limk→0 gk(r) = +∞ for
any r ∈ [0, R]. Thus there exists a small k0 > 0 such that

gk(r) > f2(r) for r ∈ [0, R] and k ∈ [0, k0]

and the set

I := {k ∈ (0, k0); gk(r) > f2(r) for r ∈ [0, R0]}
is nonempty and open. Setting l := sup I, we see that l < 1, l /∈ I and there
exists r0 ∈ [0, R0] such that gl(r0) = f2(r0).

If r0 = R0, then gl(R0) = l−mp/[m(p−1)−1]f1(lR0) = f2(R0). Since f1(R0) =
f2(R0) and gl is strictly decreasing with respect to l, we conclude that l = 1
and which contradicts to the hypothesis. If r0 ∈ (0, R0), then gl much touch
f2 at r = r0 from the above. But in this case we deduce from (1.10) that

(|g′l|p−2g′l)
′′(r0)− (|f ′2|p−2f ′2)

′′(r0)

= (1− l[pq−(m+1)(p−1)]/[m(p−1)−1])(fq/m
2 )′(r0) < 0,

which obviously violates the strong maximum principle. Thus gl much touch
f2 at r = 0 from the above. But also from (1.10), we find (|f ′2|p−2f ′2)

′(0) =
−αλ

1/m
2 and (|f ′2|p−2f ′2)

′′(0) = −(fq/m
2 )′′(0) = −q/mλ

q/m−1
2 f ′′2 (0). Similarly

for gl and we obtain

(|g′l|p−2g′l)
′′(0)− (|f ′2|p−2f ′2)

′′(0)

= (l[pq−(m+1)(p−1)]/[m(p−1)−1] − 1)q/mλ
q/m−1
2 f ′′2 (0) < 0,

which leads to another contradiction and completes all the proofs. ¤

5. Uniqueness

In this section, we show that there exists only one fast decaying solution for
the problem (1.10).

Recall that such a solution has compact support [0, R] and has an interface
relation

(5.1)
lim

r→R−
(f [m(p−1)−1]/[m(p−1)])′(r)

= − [m(p− 1)− 1]/[m(p− 1)]β1/(p−1)R1/(p−1)

by Theorem 4.8.
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Theorem 5.1. The set S2 consists only one element.

Proof. Let F and f be any two fast orbits with compact supports [0, Ri] for
i = 1, 2 respectively and satisfy F (0) > f(0). We define

fk(r) = kf(k−γr), γ = [m(p− 1)− 1]/(mp)

and then fk will be larger than F on [0, R2] for sufficiently large k. We now
define

τ = min{k ≥ 1; fk(r) ≥ F (r), 0 ≤ r ≤ R2}.
The uniqueness proof is now reduced to showing that τ is not greater than 1.
Suppose that τ > 1, to the contrary. We will show that there exists ε > 0 such
that fτ−ε(r) ≥ F (r) for every r ∈ [0, R2]. Indeed, we are going to show that
fτ (r) does not touch F (r) in compact support [0, R2] by dividing into three
cases;

(i) in the interior of the support,
(ii) at the origin,
(iii) at R2.
In fact, fτ (r) solves

(5.2)
(|f ′τ |p−2f ′τ )′ + βr(f1/m

τ )′ + αf1/m
τ + (fq/m

τ )′

= − τ(1− τ q/m−γ−1)(fq/m)′.

(i) If fτ touches F at r0 ∈ (0, R2), then fτ (r0) = F (r0), f ′τ (r0) = F ′(r0) < 0
and

(|f ′τ |p−2f ′τ )′(r0) < (|F ′|p−2F ′)′(r0).
But fτ (r) ≥ F (r) near r = r0, which obviously violates the strong maximum
principle.

(ii) If fτ touches F at r0 = 0, then fτ (0) = F (0) > 0, f ′τ (0) = F ′(0) = 0 and
(|f ′τ |p−2f ′τ )′ = −αf

1/m
τ (0) = (|F ′|p−2F ′)′(0) < 0. Differentiating the equation

(1.10) and (5.2), we reduce that

(|f ′τ |p−2f ′τ )′′(0)− (|F ′|p−2F ′)′′(0) = −τ(1− τ q/m−γ−1)(fq/m)′′(0) < 0.

Thus, we have
(|f ′τ |p−2f ′τ )′′(r)− (|F ′|p−2F ′)′′(r) ≤ 0

near r0 = 0, which leads to a contradiction.
(iii) For the final case, we define the functions u, Uτ corresponding to F and

fτ by
u(x, t) =: t−αF 1/m(r),

Uτ (x, t) =: t−αf1/m
τ (r) =: τ1/mt−αf1/m(τ−γr),

where γ = (p − 2)/p, r = rt−β as defined before. Then u(x, t) is a solution of
(1.1) and Uτ is a supersolution. Indeed, a straightforward computation shows
that

Ut−(|(Um)x|p−2(Um)x)x−(Uq)x = τ1/m(τ q/m−γ−1−1)|(fq/m)′| ≥ 0 for τ > 1.
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Following directly the proof of Lemma 10 in [12], we can show that for
fixed t > 0 and all sufficiently small δ′ > 0, there exists θ = θ(δ′) ∈ (0, 1)
such that Uτ (x, t) ≤ Uτ (x, t + δ′) if x satisfies θR2 ≤ xt−βτ−γ ≤ R2 and
limδ′↓0 θ(δ′) = θ0 ∈ (0, 1). In the proof, we use the interface relation (5.1)
crucially (see [12] for details). In particular, we have

(5.3) Uτ (x, 1) ≤ Uτ (x, 1 + δ′)

for θR2τ
γ ≤ x < R2τ

γ(1 + δ′)β . In other words, we found a separation near
the right end r = R2.

On the other hand, as previously proved, fτ can not touches F at r0 ∈
[0, R2), which implies for any ε1 > 0, there exists κ = κ(ε1) ∈ (0, 1) such that
F 1/m(x) ≤ κf

1/m
τ (x), that is

(5.4) u(x, 1) ≤ κUτ (x, 1).

We choose ε1 > 0 so that 0 < ε1 < 1− θ0 and find δ0 = δ0(ε1) such that

(5.5) 1− ε1 > θ(δ′)

for δ′ ∈ (0, δ0). By continuity of Uτ , there exists δ1 = δ1(ε1) ∈ (0, δ0) such that

(5.6) κUτ (x, 1) ≤ Uτ (x, 1 + δ′)

for any δ′ ∈ (0, δ1) and 0 ≤ x < (1− ε1)R2τ
γ . Combining (5.3), (5.4), and (5.6)

and using again the continuity of Uτ , we deduce that for δ ∈ (δ′, δ1), δ − δ′

small enough, we have

F 1/m(r) < Uτ (x, 1 + δ) = τ1/m(1 + δ)−αf1/m(x(1 + δ)−βτ−γ)

for any x ≥ 0. Furthermore, from the continuity with respect to τ, there exists
τ1 ∈ (0, τ) such that

(5.7)
u(x, 1) = F 1/m(r) ≤ τ

1/m
1 (1 + δ)−αf1/m(x(1 + δ)−βτ−γ

1 )

= Uτ1(x, 1 + δ)

for any x ≥ 0. By parabolic maximum principle, we have u(x, t) ≤ Uτ1(x, t+δ),
that is,

(5.8) t−αF 1/m(xt−β) ≤ τ
1/m
1 (t + δ)−αf1/m(x(t + δ)−βτ−γ

1 )

for any t ≥ 1 and x ≥ 0. Rewriting (5.8) of the form;

F 1/m(r) ≤ τ
1/m
1 [t/(t + δ)]−αf1/m(r[t/(t + δ)]−βτ−γ

1 )

and letting t −→∞, we find that

F 1/m(r) ≤ τ
1/m
1 f1/m(rτ−γ

1 )

which contradicts the fact that τ is the smallest constant with that property.
Thus fτ does not meet at r0 = R2.

Hence we may find ε > 0 so that

fτ−ε(r) ≥ F (r) for every r ∈ [0, R2]
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which means that we can slightly reduce the factor τ. Hence we may conclude
that τ = 1 but it is obviously impossible. ¤
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