• Title/Summary/Keyword: deformation concentration

Search Result 281, Processing Time 0.029 seconds

Assessment of Interpolation Schemes in the Window Deformation PIV (조사구간 윈도우 변형을 이용한 PIV에서 보간법 평가)

  • Kim, Byoung-Jae;Sung, Hyung-Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.59-68
    • /
    • 2006
  • We have evaluated the performances of the following six interpolation schemes used for win-dow deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange interpolations. Artificially generated images comprised of particles of diameter in a range pixel were investigated. Three particle diameters were selected for detailed evaluation: pixel with a constant particle concentration $0.02particle/pixel^2$. Two flow patterns were considered: uniform and shear flows. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

  • PDF

A Study on Improvement of fatigue Details in Orthotropic Steel Deck Bridge with Bulkhead Plate (벌크헤드 플레이트가 부착된 강바닥판교의 피로상세 개선 연구)

  • 공병승
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • An orthotropic steel deck system is widely adapted form for a long-span bridge. It has many advantages, such as the big reduction of dead weight, the simplicity for erection, and the reduction of the construction period. However, an orthotropic steel deck system requires a lot of welding work, which may result in defects and deformation of connection. Therefore, the research for the general behavior and fatigue strength of the several details in orthotropic steel deck bridge is necessary. The fatigue failure with distortion results from secondary stress by out-of-plane deformation; these kinds of cracks are very difficult to measure, and can not be precisely calculated through finite element analysis. This stress concentration phenomenon generates the fatigue failure around the lower scallop of the transverse rib. This paper presents improved details of the intersection between the longitudinal rib and the transverse rib of an orthotropic steel deck bridge by the third dimensional hit size test, and the finite element method, which can minimize local stress through parametric study.

Investigation of the Coil Deforamtion of the Gas Turbine Generator Rotor Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 발전기 로터의 계자권선 변형 해석)

  • Yun, W.N.;Park, H.K.;Kang, M.S.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.95-101
    • /
    • 2009
  • The generator for gas turbine power generation consists of the rotor which generates magnetic field, the winding coil which is the path for the field current and the wedge and retaining ring which prevents the radial movement of the coil. Relatively severe deformation was observed at the coil end section during the inspection of the generator for peaking-load operation, and the thermal-electricity and the centrifugal force were evaluated by the simple modeling of the windings to find the cause. But the simulation stress was not sufficient to induce the coil plastic deformation. The analysis result seems to be applicable to the base-load generators which runs continuously without shut down up to a year, but there had been more deformation than simulated for the generator which is started up and shut down frequently. The cause of the coil deformation was the restriction of the expansion and shrinkage. The restriction occurs when the winding coil shrinks, and the stress overwhelms the yield stress and cause the plastic deformation. The deformation is accumulated during the start-ups and shut-downs and the thermal growth occurs. The factors which induce the coil restriction during the expansion and shrinkage should be reduced to prevent the unallowable deformation. The resolutions are cutting off the field current earlier during the generator shut-down, modifying the coil end section to remove the stress concentration and making the insulation plate inserted between the coil end section and the retaining ring have the constant thickness.

  • PDF

Measurements of the Diamagnetic Susceptibility of NaCl Aqueous Solution

  • Lee, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.669-675
    • /
    • 2003
  • Using a SQUID magnetometer, the diamagnetic susceptibility of NaCl aqueous solution was measured with high accuracy in a magnetic field of up to 6 Tat 25$\pm0.05^{\circ}C$. The NaCl concentrations adopted in this experiment were 0 (water), 7.5, 15, 23, 26.2, 26.6 and 100% (crystal) with the concentration error of $\pm$0.04%. Experimental data was compared with the calculated value of susceptibility derived from dependence of the vapor pressure on NaCl concentration As a result, our measured value was almost in accordance with the calculated value. It was found that the diamagnetic susceptibility shows a decrease of approximately 10% within the saturated concentration (26.2%) and that the susceptibility is one of the effective cause for the concentration dependence in the gas-liquid interface deformation of the NaCl solution.

A microscopic study on the rheological properties of human blood in low concentration limit

  • Kang, In-Seok
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.77-86
    • /
    • 2002
  • A microscopic theoretical study is performed to predict the rheological properties of human blood in the low concentration limit. The shear thinning behavior of blood in the low shear limit is studied by considering the aggregate formation of red blood cells, which is called the rouleaux formation. Then the constitutive equations of blood in the high shear limit are derived for various flow situations by considering the unique features of deformation of blood cells. Specifically, the effects of the surface-area-preserving constraint and the lank-treading motion of blood cells on the rheological properties are studied.

A study on Tensile performance of Energy Absorbing Bolts in Space Frame (스페이스프레임에 사용되는 에너지 흡수형 볼트의 인장성능연구)

  • Lee, Sung-Min;Kim, Min-Sook;Choi, Jung-Sam;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

Effects of Kneading Concentration on Characteristics of HwBKP Fibers (니딩 처리 시 지료농도에 따른 활엽수표백크라프트펄프의 섬유특성 변화)

  • Seo, Ji-Hye;Choi, Kyoung-Hwa;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • In this study, effects of kneading concentration on characteristics of hardwood bleached kraft pulp (HwBKP) fibers were elucidated. A laboratory two-shaft kneader was utilized for kneading. Kneading concentration was varied in the range of 15-30% (w/w) and the number of kneading treatment was adjusted between 0 and 6 passes. It was found that kneading concentration influenced fiber characteristics. At 15% of pulp concentration, fiber length slightly increased with increasing the number of kneading passes, while other morphological properties such as fiber width and curl decreased: fiber straightening occurred. In addition, the increase in WRV and the decrease in CSF were the largest at 15% kneading concentration, meanings that fibrillation mainly occurred. In contrast, at higher kneading concentration exceeding 20%, fiber deformation like curl was mainly occurred. Also, at kneading concentration of 20% and 30%, fiber length decreased with the number of kneading passes while other morphological properties such as fiber width, and WRV increased. Severe fiber entanglement was found at 30% kneading, which shall be removed during papermaking.

Phase Transformation and Work-hardening Behavior of Ti-based Bulk Metallic Glass Composite

  • Hong, Sung Hwan;Kim, Jeong Tae;Park, Hae Jin;Kim, Young Seok;Park, Jin Man;Suh, Jin Yoo;Na, Young Sang;Lim, Ka Ram;Kim, Ki Buem
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.37-43
    • /
    • 2015
  • In present work, work-hardening behavior of TiCu-based bulk metallic glass composite with B2 particles has been studied by systemic structural and mechanical investigations. After yield, pronounced work-hardening of the alloy was clearly exhibited, which was mainly related to the martensitic transformation as well as the deformation twinning in B2 particles during deformation. At the early plastic deformation stage (work-hardening stage), the stress-induced martensitic transformation from B2 phase to B19' phase and deformation-induced twinning of B19' phase was preferentially occurred in the around interface areas between B2 phase and amorphous matrix by stress concentration. The higher hardness value was observed in vicinity of interface within the B2 particles which are probably connected with martensitic transformation and deformation twinning. This reveals that the work-hardening phenomenon of this bulk metallic glass composite is a result of the hardening of B2 particles embedded in amorphous matrix.

Dynamic Rheological Comparison of Selected Gum Solutions

  • Choi, Su-Jin;Chu, So-Young;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.474-477
    • /
    • 2006
  • Dynamic rheological properties of commercial 0.8, 1.0, and 1.2% gums [carboxylmethylcellulose (CMC), guar gum, hydroxypropylmethylcellulose (HPMC), tara gum, and xanthan gum], which can be dissolved in cold water, were investigated by small-deformation oscillatory measurements. Magnitudes of storage (G') and loss (G") moduli increased with increasing concentration of gum solutions except for xanthan gum. Guar gum exhibited greatest G' and G" values among all gums except for G' value at 0.8% concentration. Slopes of G' and G" decreased with increasing concentration of gum solutions except for xanthan gum. Tan ${\delta}$ (G"/G') values decreased with increasing concentration of gum solutions except for xanthan gum. Tan ${\delta}$ values of xanthan gum solutions were much lower than those of other gum solutions, indicating that xanthan gum solutions were predominantly more elastic than viscous.

Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation (변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성)

  • Park, Byung-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.711-719
    • /
    • 2006
  • A series of geotechnical centrifuge model tests and numerical modelling have been performed to study engineering characteristics of the composite ground reinforced by both the Sand Compaction Piles(SCPs) and the deformation-reducing sheet piles. The research has covered several key issues such as the load-settlement relation, the stress concentration ratio and the final water content of the ground Totally three centrifuge tests have been conducted by changing configuration of the sheet piles, i.e., a test without the sheet pile, a test with the sheet pile at a single side and a test with the sheet piles at the both sides. In the model tests, a vertical load was applied in-flight on the ground surface. On the other hand, class-C type numerical modelling has been performed by using the SAGE-CRISP to compare the centrifuge test results using an elasto-plastic model for SCPs and the Modified Cam Clay model for the soft clay. It has been found that the sheet piles can restraint failure of foundation, thereby increasing yield stress of the ground. The stress concentration ratio was in the range of $2{\sim}4$. In addition, numerical analysis results showed reductions both in the ground heave($20{\sim}30%$) and in the horizontal movement($28{\sim}43%$), demonstrating the deformation-reducing effect of the sheet piles.