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Abstract

A microscopic theoretical study is performed to predict the rheological properties of human blood in the
low concentration limit. The shear thinning behavior of blood in the low shear limit is studied by con-
sidering the aggregate formation of red blood cells, which is called the rouleaux formation. Then the con-
stitutive equations of blood in the high shear limit are derived for various flow situations by considering the
unique features of deformation of blood cells. Specifically, the effects of the surface-area-preserving con-
straint and the tank-treading motion of blood cells on the rheological properties are studied.

1. Introduction

In the present paper, we are concerned with development
of a theory on the rheological properties of human blood
by viewing the blood as a suspension of red blood cells
(RBCs). More specifically, we want to derive formulas for
the effective viscosity of blood in various basic flow fields
by taking account of the behavior of red blood cells such
as aggregation in t1e low shear rate limit and the area-pre-
serving deformation in the high shear rate limit.

The experimental findings from the viscosity measure-
ments indicate the so-called shear thinning behavior of
blood. Thus, in many numerical studies, the empirical con-
stitutive relations such as Casson's model and the bivis-
cosity model are adopted (see the book by Fung (1981) and
the paper by Nakamura & Sawada (1988)).

However, the viscometric measurement results are not
sufficient, because it can provide only the rheological
information of the blood under certain limited flow fields
such as a capillary flow or a shear flow. On the other hand,
in real situations, the blood is to be subjected to much more
diverse flow fields. Therefore, it is necessary to perform
theoretical studies on the rheological properties along with
the viscometric measurements. In such theoretical studies,
the blood is viewed as a suspension of red blood cells. The
microscopic information of the behavior of blood cells is
incorporated with the theory of suspension rheology to
derive the macroscopic rheological properties.

As a first attempt in that direction, the shear thinning
behavior of blood in the low shear limit 1s studied from a
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Fig. 1. Rouleaux of human red blood cells.

microscopic point of view. Then, the constitutive equations
of blood in the high shear rate limit are also derived by
considering the deformation characteristics of the blood
cells.

2. Behavior of red blood cells

When the shear rate is small, the red blood cells form
rouleaux by aggregation as shown in Fig. | (see also Fung
1981). As the shear rate increases, the average number of
red blood cells in each rouleau decreases. If the shear rate
is larger than a certain critical value, the rouleau is broken
up into individual cells. At subcritical shear rates, the red
blood cells in each rouleau maintain their rest-state equi-
librium shape, i.e. doughnut-like shape. However, if the
shear rate is supercritical, the red blood cells are dispersed
in plasma separately and exhibit quite complicated behav-
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ior of deformation and motion.

Schmidt-Schénbein et al. (1969) found the following
from in vitro experiments on the blood at low concentration
of RBC (5-10%). Normal cells were observed to be sep-
arate, not in rouleaux, at shear rate x=4.6 s™'. Upon slight
increase of K the individual cells were seen with occasional
tumbling and orbiting in flow. As k was further increased
the cells became oriented and less orbiting was seen. For
1©100s™ the individual cells lost their biconcave shape
and transformed to a variety of shapes, many resembling
prolate ellipsoids with major axes parallel to the direction
of flow, with no tumbling. Goldsmith (1971) reported sim-
ilar observation from the Poiseuille flow experiment. In
summary, the experimental evidence suggests that at low
shear rates the cells rotate but as the flow speeds up rota-
tion is no longer observed, i.e. the profile of the cell
becomes stationary relative to axes fixed in space. This
kind of motion is called the tank-treading motion (see the
schematic figure given later in subsection 5.2). Theoretical
studies for this tank-treading motion were made by Rich-
ardson (1974) and Keller and Skalak (1982).

Another important feature we must consider is the so-
called constraint of area preservation during the deforma-
tion of blood cells. This constraint and the flexibility of cell
membrane constitute a unique feature of blood cell defor-
mation. Due to the constraint of area preservation and neg-
ligible resistance to bending, the equilibrium shape of red
blood cells does not depend on the strain rate if its value is
larger than a certain critical value. Instead, the membrane
tension increases as the strain rate increases, and eventually
the cell is broken apart (i.e. hemolysis occurs) if the strain
rate is larger than a critical value. Pozrikidis (1990) showed
that a spheroidal shape, which is determined by the sphe-
ricity index rather than the strain rate, is an equilibrium
shape of a blood cell subjected to a uniaxial straining flow.

In the present study, the above characteristics of blood
cells are considered to predict the effective viscosity of
blood as a function of shear rate. For our theoretical devel-
opment, Batchelor's theory on the suspension of ellipsoidal
particles is used.

3. Theories on the suspension rheology
3.1. Batchelor's theory

Batchelor (1970) used the volume average to derive the
formula for the bulk stress from a microscopic flow infor-
mation.

5y = (0, pu e )dV 3.1)

With the aid of vector calculus, he showed that

U, U
T ==6 J-V‘Z pdv+#(9_+a_l)+21(f) (3.2
78

where V, denotes the volume of each particle and

Zl(jp) = ‘l/z j { O-l'kxjnk —:u(ulnj+ ujnl') }dA
4y

s prixav- ~ipusu,dv (3.3)
V&, 4

The term ¥  is called the ‘particle stress’, and i is
the average velomty gradient. In fact, (3.2) is a quite gen-
eral expression and may be a starting point for the sus-
pension rheology for various situations.

Batchelor applied the formula (3.2) to the case of dilute
suspension (¢—0) to get some analytical results. He
assumed further that the particle Reynolds number is very
small and the last two terms in (3.3) may be safely
neglected. In the case of dilute suspension, the interaction
between particles is neglected and consideration of a single
particle in a general linear flow provides sufficient infor-
mation. Thus, the average velocity gradient equals the
velocity gradient given far from the particle.

QU /0%, = e~ £,,5% (3.4)

Batchelor showed that the particle stress in the dilute limit
can be represented by

5y = 4sp, 3.5

where D is the coefficient in the expansion for the dis-
turbance pressure and the disturbance vorticity

p_ _8r !
u- Do ox; ’kax é’xk ’ (3.6)

, ar %!

W = —€uD ’3 €ijij,o~,Taxl+"' . 3.7

The effective stress of a dilute suspension of ellipsoidal
particles has in general non-Newtonian form and shows
complicated behavior. However, in some special situations,
the constitutive equation can be derived without much dif-
ficulty. The first example is the suspension of couple-free
particles which are similar in shape and orientation. For
this case, Batchelor showed that

® =3 Cin k1237rabc (3.8
2§ =3ue (o abe V. .8)

for the suspension of ellipsoidal particles with semi-diam-
eters a, b, and c. Another example is the case of couple-free
particles subject to such strong Brownian motion that their
orientations are randomly distributed with uniform proba-
bility, i.e. statistically isotropic case. In this case,

4, +Jo+J3) 2(1 1 1)}

y 2“6U3v2“bc{15(1Jz+1213+1311)+5 Lt

3.9
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where I, and J; (i = 1, 2, 3) are the functions of g, b, and c.
The above two expressions are used to predict the effective
viscosity of the blood.

3.2. Hinch and Leal's theory

Hinch and Leal (1971) applied Batchelor's general for-
mulation to the suspension rheology of dilute spheroidal
particles. Their principal result is

3" = 2u6{24,,E:(pppp)

+ZBH(E- (op)+(pp) E—%IE:(pp})

+CHE+F,,D,+(<pp)—%I)} (3.10)
where E is the ratc-of-strain tensor (E =¢;e;e), p is the
unit vector in the direction of rotation axis, and D, is the
rotary diffusivity. By using Batchelor's general result for
the ellipsoidal particles, they derived the asymptotic for-
mulas for the coefficients when the particles are sphe-
roidal.

4. Effect of aggregation on the effective prop-
erties of blood in the low shear rate limit

The human blood cells are known to form aggregates
that are called roulzaux. When the shear rate is small, the
aggregates become prevalent. In this section, we explore
the effect of aggregation on the effective properties of
human blood. As a first attempt, we assume that the
degree of aggregaiion is the same for all rouleaux and
each roubleau can be approximated by a spheroid as
shown in Fig. 2. We shall consider two extreme cases of
orientation distribution: one is the random distribution,
which may be appropriate for low shear rate limit; and the
other is the completely aligned situation in the uniaxial
straining tlow.

¥

0000000 e~

Fig. 2. The spheroidal approximation for the rouleaux formed by
aggregation at low shear rates.
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4.1. Randomly oriented spheroidal rouleaux

Let us begin with the case of the perfect random dis-
tribution of orientation. When the suspension is dilute,
Batchelor's formula (3.9) is appropriate for the particle
stress term. The formula can be further simplified when the
shape of the particle is spheroidal (i.e., b=c¢)

, 4(J,+2J5) 201 2)
(p) — » L - el 4=
Y= 2#«@{ ]5(2j|+‘13)J2+5([|+13 } 4.D

where ¢ is the volume fraction of solid particles. Since
ab’=1 for spheroids, the formula (4.1) can be represented
as (see Kang (1993) for the details)

3y P=2pe ¢f(a), (4.2)

where a is the dimensionless semi-diameter of the rouleau
along the rotation axis. Therefore, the effective viscosity of
blood is given by

15 = (1 + fla)d). (4.3)

where p is the viscosity of plasma.

When the rouleaux are quite long, we may express the
dimensionless semi-diameter a in terms of degree of aggre-
gation. Let n be the number of cells in one rouleau. Since
the maximum thickness of a cell is about 2.8 pm and the
diameter is 7.6 um, a n-cell rouleau has the aspect ratio
about

r=9= a% = gn
Y X
and thus
:
(1:’—,12-. 4.4)

In Fig. 3, the factor (fla) :f(nz/Z) = f(n)) is shown as a
function of the degree of aggregation. In order to see the
effect of aggregation more explicitly, we may consider

gg*!n[: l+:fil@ (4.5)
w1+ f(e

where p*(n) denotes the effective viscosity when the
degree of aggregation is n. Even though the above result
was derived for the low concentration limit, let us apply it
to the case of normal hematocrit ¢=0.45. Then. with
T(1y=2.8, f(20)=4.3, f(40)=8.7. f(80)=22.5. we have

uE(n)

2.2, for n=40. (4.6)
‘U':‘( 1)

{ 1.3, for n=20
4.9, for n=80

As we can see above, the effect of aggregation is con-
siderable even when the low concentration model is used.
In fact, if the concentration is as high as ¢=0.45. we need
to consider the interaction eftects between the rouleaux.
Although extremely complicated physics of interaction
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Fig. 3. The factor function }’(n) for the effective viscosity as
given in (4.5).

does not allow us any rigorous analysis, an order of
increase in the effective viscosity can be easily imagined as
observed in experiments (e.g. Chien, 1970).

The significance of the present analysis lies in that the
shear thinning behavior of blood at low shear rates can be
best understood by the fact that the degree of aggregation
decreases as the shear rate increases.

4.2. Aligned spheroidal rouleaux in the uniaxial
straining flow
When the rouleaux are subjected to the straining flow,
they are aligned in the principal strain direction as shown
in Fig. 4. In this case, the effective viscosity may be easily
obtained. The rate-of-strain tensor for this problem is

1 1
€;= E{Piﬂj'j‘]i‘b"i’i’,} 4.7

For spheroidal particles, we may show that (Batchelor,

r,z

Fig. 4. A completely aligned rouleau in a uniaxial straining flow.

80

1970)
Ciik,ekl Jl(plp]—35U)_ 2(q,qj+r,rj_35” A |
abc =F 3 _ ﬁeij (4'8)
2(2‘11 +J)d, 2
Then from (3.8), we have
2 .
=2 49)

Therefore, the effective viscosity is given by

2 .
e = 1 es(@o) =4 1437 o] (4.10)
2
The factor for the uniaxial straining flow case (2/3 J,) is
shown in Fig. 5 for comparison with the factor for the case
of complete random distribution.

4.3. Breakup of rouleaux due to straining flows

In order to proceed in the development of the theory for
the shear thinning effect, we need to estimate the degree of
aggregation in terms of shear rate. As a first step, we con-
sider a rouleau subject to a uniaxial straining flow as
shown in Fig. 4. Although the rouleaux are known to be
deformed easily in shear flows, the major cause of rouleau
breakup is believed to be the straining component of the
imposed shear flow. Thus, by considering only the uniaxial
straining flow we may achieve the goal. The straining force
exerted on the center-plane of a rouleau can be estimated.
If the straining force is larger than the attracting force
between cells in a rouleau, then the rouleau is broken up
into two smaller rouleaux.

As before, we again approximate a rouleau as a spheroid
as shown in Fig. 4. Then the straining force can be easily

10

Factor
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Fig. 5. The factor functions of the effective viscosities for the
aligned rouleaux in a uniaxial straining flow and the ran-

domly distributed rouleaux.

Korea-Australia Rheology Journal



A microscopic study on the rheological properties of human blood in low concentration limit

obtained by Jeffery's solution (1922). As discussed in
Pozrikidis (1990), the surface stress acting on the external
surface of an ellipsoidal particle, which is immersed in a
general linear flow, is given by

fi=(=Pd+A)-n

where n is the outward unit normal from the surface of the
particle. The constant matrix A is diagonal if a uniaxial
straining flow is assumed and the x-directional component

of the surface stress is given in dimensionless form as
fo=(An-Pon e, (4.11)

Since the stress is scaled by puE/2 for the rate-of-strain ten-
sor

E= E{e_rex—ée_‘.ey-—%e:e:} (4.12)

the straining force on the right half of the rouleau is easily
obtained by integrating the surface stress

Fo=[ds = [A 1 l(%}pﬂj (n-e,)dS= [A l I(“;E)—po}nb%
(4.13)

Now let the dimensional maximum attracting force per
unit area of cell-cell interface be f.,. Then

Fal! = }‘azz(ﬂbz)

In order for a rouleau to be broken up by straining flow
F.2F,,. Therefore at critical aggregation, we have

(4.14)

A, 1(%) =DPo +J}un (4.15)
As given in Pozrikidis (1990), A,, = 8 The function

3g|l'

g5(r) can be shown to be identical to the function J, (a)
of Batchelor's notation by using the relation r=a/b=a’"

" _ udu _ AdA
82 (")—K . 5 2‘,'? 3 |
(E 3+u] (a+A) (a+lj

(E§+uJ

Now we have the relationship

= J,(a)
2

Tolw

(4.16)

(55 )= o7 (4.17)
Let us now estimate the attracting force. Chien (1970)
showed experimentally that the rouleau may be formed if the
shear rate is less than 4 sec”'. Let the maximum value of the
strain rate be E,,,, beyond which the rouleau formation is not
observed. Then for 2-cell rouleau we may apply (4.17) to
estimate FE,,. For convenience, we adopt a reasonable
approximation that a 2-cell rouleau may be viewed as a
sphere. For this case, we can show that (Batchelor, 1970)
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2

Na

Therefore, we have

p0+}Ul’=5uEnxllr' (4.18)

Finally from (4.17) and (4.18), we find a very important
relationship
E 15

F= ),

z 1 (4.19)

which is one of the most important results in the present
work. The definition of Jy(a) for the axisymmetric case is
given in (4.16).

Now the relation (4.19) can be used to get a formula for
the effective viscosity that exhibits shear thinning behavior.
As discussed in subsection 4.1, the effective viscosity may
be found if we have the degree of aggregation $n$ by the
formula (4.3) via (4.4). Thus, we have

wEm) _ 1+f(n)e

HE(sph) 1+ f(sph)o
where U*(sph) denotes the effective viscosity of the sus-
pension of spherical particles. On the other hand, from
(4.19), we may estimate the the dimensionless semi-diam-
eter, a, of a rouleau for the given dimensionless strain rate
E/E,... In turn, the degree of aggregation n can be found by
the relation (4.4) for the given value of a. In that way, the
degree of aggregation n can be estimated as a function of
the dimensionless strain rate E/E,,,,.

Since now the degree of aggregation is known for the
given dimensionless strain rate, the effective viscosity can
be computed by using the relation (4.20). In Fig. 6, the
effective viscosity is given as a function of dimensionless
strain rate for the case of hematocrit ¢=0.45. The shear
thinning effect is clearly seen and the result shows qual-
itatively good agreement with the experimental findings of
Chien (1970). Of course, our analysis is based on the the-
ory for the dilute suspension. Furthermore, we did not
include any complicated aggregation behavior such as the
branched rouleau formation and the deformation of a rou-
leau in shear flows. Nevertheless, the simple theory dem-
onstrates clearly that the aggregation of blood cells
accounts for the interesting shear thinning behavior of
human blood at low shear rates.

(4.20)

S.Effect of area preserving constraint on the
effective properties in the high shear rate

In the previous section, we have developed a theory that
predicts the shear thinning behavior based on the rouleau for-
mation in the low shear rate limit. In this section, we consider
now the case of high shear rate. When the shear rate is high
enough for the cells to exist separately in plasma, the effective
property of blood is determined mainly by the deformation
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Fig. 6. The dimensionless effective viscosity as a function of
dimensionless strain rate.

and motion of individual cells. In this section, we consider the
following: (i) the effects of completely aligned cells in axi-
symmetric straining flows; and (ii) the effect of tank-treading
motion of red blood cells due to shear flow.
5.1. Completely aligned cells in axisymmetric
straining flows

We first consider the simplest case, in which individual
cells are completely aligned due to the axisymmetric
straining flows. As discussed in section 2, the red blood
cells are easily deformed in straining flows and take sphe-
roidal equilibrium shapes in axisymmetric straining flows
if the membrane tension is assumed to be isotropic. Since
the cell deformation should satisty the simultaneous
requirements of volume conservation and the area pre-
serving, the nature of cell deformation is different from that
of elastic particles or droplets. Differently from the case of
elastic particles, the equilibrium shape is independent of
the strain rate if the bending resistance of the cell is
neglected. On the other hand, the tension of the membrane
increases as the strain rate increases. In this section, the
effect of area-preserving property on the suspension rhe-
ology is discussed for the two axisymmetric straining
flows. In a uniaxial straining flow each blood cell is
deformed into prolate shape and in a biaxial straining flow
into oblate shape as shown in Fig. 7.

The most important parameter for the deformation of
blood cells is the sphericity index S defined by

1ol —

§= (A/4m)

i

(3V/dn)

where A is the total surface area and V is the volume of the
cell. For the case of spheroidal particles, the index is a function

82
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Fig. 7. The prolate and oblate blood cells in the uniaxial and
biaxial straining flows.

of the the aspect ratio r=a/b. For the sphericity index of the
human red blood cell, it is well established that the area of a
red cell is approximately 44% larger than the minimum area
required for the spherical shape (Skalak er al., 1989). Then by
the definition of the index we have S=1.2 and we have

r=0.25 for an oblate spheroid (5.1a)

r=6 for an prolate spheroid (5.1b)

Now let us first discuss the case of uniaxial straining
flow, in which the red blood cell takes a prolate equilibrium
shape. As in section 4, the effective viscosity can be
obtained by using the theory of Batchelor or equivalently
by using the theory of Hinch and Leal. Here let us use the
theory of Hinch and Leal (1971) that is given in subsection
3.2. When the aspect ratio =6, the coefficients in (3.10)
can be estimated as (see Hinch and Leal, 1971)

Ax=9.1379, B,=0.05430, Cy=2.

When the effect of Brownian motion is neglected, from
(3.10), we have

37 =2u¢{18.2758E:(pppp)

+O.1086(E-(pp)+<pp)-E—%IE:(pp))+2E} (52)
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In the case of uniaxial straining flow, all cells are assumed
to be oriented in the e.-direction and thus

e E= e L
p=e,; E= E[ere\ 5€:€, 2e\.e\} R
where E is the principal strain rate. Substituting the above

relations into (5.2) and subtracting the isotropic contribu-
tion, we find

s = 209(14.3287)E . (5.3)
Or we have
= (1 + 14.33¢) ‘ (5.4)

In the case of tiaxial straining flow, the aspect ratio of
the equilibrium cell shape is »=0.25 and the coefficients
are estimated as

Ay = 22929, B,= —191815, C, = 4.8363.

By substituting the above coefficients, p = e, and

E = E[—ereﬁ %ev,e\ +%e:e:} ,

and subtracting the isotropic contribution, we find
3" = 2ug(2.7784)E (5.5)

Therefore, the effzctive viscosity for the biaxial straining
flow is

¥ = (1 + 2.78). (5.6)

The effective viscosity for a dilute suspension of elastic
particles was obtained by Cho (1992) under the assumption
that the deformation from spherical shape is not large. The
result is that

> = 2,u¢Ei2.67865+ 15.38652}& 5= E‘GE (5.7
where + refers to the uniaxial and biaxial straining flows
respectively, and i~ and G are the principal strain rate and
the shear modulus of the elastic particle. The effective vis-
cosity corresponding to (5.7) is

1 = y[l + Gtz 67865+ 15.38661)@ 5= '“C—b : (5.8)

The factors for the effective viscosity (U*—u)/¢ are shown
in Fig. 8. The closed and open circles are for the effective
viscosity of human blood in the cases of uniaxial and biax-
ial straining flows respectively. The open and closed tri-
angles are for the effective viscosity of the suspension of
elastic particles in the cases of uniaxial and biaxial strain-
ing flows. For the cases of elastic particles, /G=0.01s is
used in the plot.
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Fig. 8. The factors of the effective viscosity (u* —u)/¢ as func-
tions of strain rate (closed circles: RBC in a uniaxial
straining flow: open circles: RBC in a biaxial straining
flow: closed triangles: elastic particle in a uniaxial strain-
ing flow: open triangles: elastic particle in a biaxial
straining flow).

5.2. The effect of tank-treading motion in shear
flow

Here we estimate the bulk stress of human blood subject
to shear flow by considering the tank-treading motion of
red blood cells as shown in Fig. 9. In order to develop a
theory on the effective viscosity, Batchelor's (1970) theory
for the dilute suspension of ellipsoidal solid particles is
modified appropriately to consider the tank-treading
motion of red blood cells. Then the modified theory is
incorporated with the theory of Keller and Skalak (1982)
on the tank-treading motion of red cells to estimate the
rheological properties of blood.

5.2.1. Disturbance field near a tank-treading red
blood

As we have seen in 3.1, we need to obtain the second
order tensor D;; for estimation of 3 ’. To do that. we con-
sider a tank-treading ellipsoidal red blood cell as shown in
Fig. 9. In the figure, x; denote the coordinates in a fixed
Cartesian coordinate system and x; denote coordinates in a
second Cartesian system having origin coinciding with the
fixed frame. The x; axis is assumed to coincide with x,
axis, but ¥, and x, axes are rotated through an angle 0
with respect to the x, and x, axes. The ellipsoidal surface is
defined by the semi-axes a, b, and ¢ on x,, x>, and x;.
respectively. The membrane surface velocity v relative to
and referred to the body frame is assumed to be

Vi =v(—a/P)xa. v =v(b/a)x,, V=0 (5.9)

where v is a parameter having the dimension of frequency.
For an ellipsoidal particle with the surface velocity in the
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KX,
X2

Fig. 9. An ellipsoidal red blood cell undergoing tank-treading
motion due to a shear flow.

form
= (E)+ Q% (5.10)

in the flow field which has

Ui = (Ey+ 2,05, (5.11)
far from the particle, Roscoe (1967) showed that the dis-
turbance is the same as would be produced by a rigid, non-
rotating ellipsoid in a liquid undergoing the undisturbed
flow
= (E,I—E,";I);j"'(gij—gs)}j N (512)
where the barred quantities are referred to the moving
coordinate system.
The disturbance flow field is generated by the rate-of-
strain tensor (E,,—Ep), which are the components of the
tensor E - E™ referred to the fixed frame. Hence we have

D= Cy(Ey—-Ep) (5.13)
For the shear flow,
010
E,y=§ 100 |- (5.14)
000
From the surface membrane velocity, we have
_ PR 010
iy =( Sab ) 100 (5.15)
000

where 1_2,7}’ are referred to the x; coordinates. In order to

transform Ej to E, we use the relation

i

Ey=EaYu¥: Ya=éi-€ (5.16)
where ¢; and e, are the unit vectors parallel to x; and x-

coordinates. Then for E,—Ep, we have

84

-sin28 cos28 0

010 2ob’
E;~Ej=5]100 +(7£)v cos26 sin20 0 . (5.17)

000 0 0 1
In the present problem, the principal directions are -

p;=(c0s6,5in6,0), g,=(-sinb,cos6,0), r,=(0,0,1) (5.18)

4{-’1(1’;‘1’,'—%51'1')—-]2(%4]—%51',‘)}

3(J S+ Tods+ T30)

and we have

lkl
& o (Enm

(8

2 2

(313)(1( cos 20+ )(p q;+p;q;) (5.19)

5.2.2. The flipping velocity and the tank-treading fre-
quency

Keller and Skalak (1982) analyzed the motion of a tank-
treading ellipsoidal cell in a shear flow such as one in Fig.
9. By applying the moment balance on the cell, they found
the flipping velocity and they also found the tank-treading
frequency by equating the energy dissipated inside the cell
and that supplied by the external fluid. By combining the
results, they found that the flipping velocity is

O=A+B cos 20 (5.20)
where

oA ) )

and I; is the integral defined as (see Batchelor(1970))
_ r" abcga2+b2}d/l
O A@+ A +A)

with A% = (@ + A)(b*+ A) (c*+ A). As we can see above, the
particle undergoes tank-treading motion without flipping if

0<-A/B<1.

The equilibrium angle of inclination is

=Lloost (LA
6* = 508 ( Bj 3.2
and the corresponding tank-treading frequency is
x- 2ab ([2+(ﬁ' 1)1 71ﬁ)<0 5.22
Y a-b u | BJ” (522)

On the other hand, if B < -A, the cell undergoes the flipping
motion. The solution of (5.20) is

(5.23)

6(t) = arctan A+B ]tan[ T

(t"to)”}
(A’-BY’
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where 1, is the time when 8=0 and T is the period of flip-
ping from 6=0 and 6=-z The period T is given by
1
T=mA-B)" (5.24)
5.2.3. Particle stress for dilute suspension of red blood
cells
When the cells undergo tank-treading without flipping,
they have of similar shape and orientation. In this case the
particle stress is given by

z,% nmabc Cu
( )(E“ Em

sy =3u (5.25)

By using the information in (5.19), we can easily show that

s Ksin 26

3u¢ 3(J,JZ+JtJ3+J3Jl)U'X""_j2Y"’]

3K cos 2 2
2 9[1-.2”3(“,/“_1)}2,,, (5.26)
where
1/3+cos26 sin26 0
Xy = sin2@  1/3-cos26 0 |,
0 0 -2/3
1/3—cos260  —sin26 0
Y, = —sin20 1/3+cos280 0 |,
0 0 -2/3
—sin26 cos26 0
Z;=| cos20 sn28 0|,
0 0 o0

and ¢ is the volume fraction of the red blood cells, i.e.
o= Zgﬂabc/v.

When the cells undergo flipping motion, the average par-
ticle stress may be obtained as follows.

1

3up To(3u¢,l
PNARVL

-7, (3u¢)

_Llen(TPN 46

_f (3,u¢)A+B cos 26 (5.27)
Here we should rote that the time average should be the
same as that obtained by the probability of distribution.
The probability distribution is governed by

L4V (phey)=C. (5.28)

8t
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At steady state,

ad. . |
(PO =0, Le., poc— (5.29)
26 P

By using
T sin20 1 r [ BYA T
[rsnz_ g 1 - }5_1
0o A+Bcos26 2 1 RN

gk (=B

and

BY/A® }Jl
(1+(1-BYA) "y 2

&

J“ A+Bcos26 2

. 2
cos 20 d9=l T ][1+
(A'-BY

we may easily show that

<o
L}_’z (Ji+0)i, +2Q( N 2 )Ei
3ug |30+ dads+ 430 3L 2+ /-1y,
(5.30)
where
0 k20
E;=| /2 0 0
0 00

As we can see above, the average particle stress 1s given in
the form of a Newtonian fluid and the effective viscosity 1s
given by

we_ ERAVSN PR N
u 1+[ufdf+hff+hlo+lzl )|

(5.31)

The equations (5.26) and (5.31) are the main results of
this subsection. For evaluation of the results, we need the
shape of tank-treading or flipping red cell. For this pur-
pose, we may need independent theoretical or experimental
work.

6. Concluding remarks

For the case of low shear rate limit, we have assumed
that the red blood cells form rouleaux that can be con-
sidered as long spheroids. By using Bachelor's classic
result on the suspension of solid spheroids, a formula for
the effective viscosity has been derived in terms of degree
of aggregation. In order to find a relationship between the
imposed shear rate and the degree of aggregation, we have
considered a rouleau in a uniaxial straining flow. By com-
bining two results, a formula for the effective viscosity in
terms of the imposed shear rate is obtained. Although very
simple and many aspects of rouleau formation are not
included in our theoretical model, the theory is capable of
showing the shear thinning effect that is in good agreement
at least qualitatively with the experimental findings (e.g.
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Chien, 1970).

In the limit of high shear rate, the effective viscosity of
blood is mainly determined by the deformation charac-
teristics of individual blood cells. For the high shear rate
limit, we have considered two problems. One is the prob-
lem of completely aligned cells in axisymmetric straining
flows and the other is for the case of flipping blood cells
in shear flow. Under the axisymetric straining tlows, the
equilibrium shapes are determined by the sphericity with-
out regard to the given strain rate if the strain rate is high
enough for the cells to exist separately. This area pre-
serving constraint has a significant effect on the rheological
properties of blood. Indeed, the uniaxial straining viscosity
of blood shows quite different characteristics from that of
suspension of elastic particles. Elastic particle extends
under a straining flow and the surface area of the particle
increases as the strain rate increases. Consequently, the
effective straining viscosity itself is a strong function of the
strain rate. However, in the case of blood cells, the effective
viscosity in a straining flow is kept constant for a wide
range of strain rate due to the ease of deformation of mem-
brane and the area preserving constraint. From the analysis,
it 1s also found that the effective viscosity of blood is much
higher in the uniaxial straining flow than in the biaxial
straining flow. This fact must be reflected in the analysis
for the flow fields where straining components are pre-
dominant. For example, the blood flow in the heart
includes straining flow components due to suction and
pumping.

Finally, we considered the tank-treading motion of red
blood cells. Batchelor's theory on the dilute suspension was
moditied and it was incorporated with the theory of Keller
and Skalak (1982) on the theory of tank-treading motion of
red cells. In a shear flow, the red cells may flip or not
depending on the shear rate and the cell shape, etc. For the
case of tank-treading without flipping, the particle stress is
predicted as a function of the shear rate and the aligned
angle. In the case of flipping, the low concentration blood
shows Newtonian behavior. The predicted formula for the
effective viscosity includes an essential parameter which is
the shape of the cell. The parameter must be obtained by

36

an independent theoretical or experimental work such as
Richardson (1974).
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