• Title/Summary/Keyword: deformation absorbing

Search Result 63, Processing Time 0.026 seconds

Study on a 2-Dimensional Dynamic Modeling Technique to Analyze the Overriding Phenomena of Rollingstock (열차의 타고오름 해석을 위한 2차원 충돌동역학 모델링 기법 연구)

  • Kim, Geo-Young;Koo, Jeong-Seo;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • This paper proposed a new 2-D multi-body dynamic modeling technique to analyze overriding behaviors taking place during train collision. This dynamic model is composed of nonlinear springs, dampers and masses by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model for rollingstock, energy absorbing capacities of collision elements, accelerations of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we chose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3-D finite element analysis, and established a 2-D multi-body dynamic model. This 2-D dynamic model was simulated under the train-to-train collision scenarios, and evaluated with 3-D virtual testing model. It was founded from the simulation results that this 2-D dynamic model could well predict overriding behaviors, and the modeling technique of carbody deformation was very important in overriding estimation.

Inversion Research on the shortening and Sliding of Drape Zones between Chinese Continent Blocks by GPS Data

  • Zhixing, Du;Fanlin, Yang;Xinzhou, Wang;Xiushan, Lu;Huizhan, Zhang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.401-405
    • /
    • 2006
  • A uniform velocity field of crust can be obtained by cumulative multi-year GPS data. Then the shortening and sliding of drape zones between Chinese Continent Blocks can be researched through the velocity field and dynamics meaning is also analyzed. A model of movement and strain is created to extract displacing and rotating information of blocks in this paper. On the basis of it, the shortening vectors and sliding states of drape zones between blocks can be obtained by the model of level center of gravity moving velocity vectors between neighboring blocks. Some result show as follows. India plate jostles greatly toward north, so a complicated movement situation is formed for 14 sub-blocks. And self-deformations of inner tectosomes can be greatly reflected according to the characteristics of drape zones between tectosomes. The extrusion deformation exists between Himalaya and Qiangtang blocks. Its contraction ratio is about 20.1 $mm.a^{-1}$. However, it only is $mm.a^{-1}$ between Tarim and Zhungar. The deformation characteristics and contraction ratio of other drape zones are obviously different with the former. The movement characteristics of contraction, shear, dislocation, etc. are showed in these zones. The average contraction ratio is about 5.0 $mm.a^{-1}$. The whole trend in the west continent has a big movement toward north, and in the east continent has a small movement toward south or southeast. The strain of west continent is far bigger than that of east, and the strain of southwest is bigger than that of the southeast. It is whole showed that India plate jostles toward north-east and the south-north zone has cutting and absorbing phenomena. The total characteristics and present-day trends of deformation of inland drape zones are basically described by the sinistrorse dislocation in south-north zone and Arjin fracture, the sinistrorse shear between south china and north china, etc.

  • PDF

Finite Element Analysis on the Stress and Deformation Behaviors of a Safety Helmet (안전헬멧의 응력 및 변형거동에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • This paper presents the stress and deformation behaviors using the finite element method as a function of the thickness of the helmets without the bead frames on the top of the shell structure. The helmet that would provide head and neck protections without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and impact energy absorption. The FEM computed results show that when the impulsive force is applied on the top surface of a helmet, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the top surface of the helmet shell. As the helmet thickness is decreased from 4mm to 2mm, the impact energy absorbing rate is radically increased, and the maximum stress of the helmet is increased over the tensile strength, 54.3MPa of the thermoplastic material. Thus, the top surface of the helmet should be supported by a bead frame and increased thickness of the shell structure.

  • PDF

반디호 복합재 착륙장치의 착륙특성에 관한 해석

  • Choi, Sun-Woo;Park, Il-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Most of studies for the ground load and ground behavior of landing gear have been conducted with an assumption that the structure of landing gear was rigid body. The assumption of rigid body during design process results in many errors or discrepancy. High ground load occurs in 3 directions on the shock absorbing strut during landing. This ground load initiated high structural deformation. In this study, the flex-multi-body dynamics is applied to adapt flexible bodies, so the results of analysis can be described close to landing gears real behaviour.

  • PDF

Nonlinear analyses of structures with added passive devices

  • Tsai, C.S.;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.517-539
    • /
    • 2004
  • Many types of passive control devices have been recognized as effective tools for improving the seismic resistance of structures. A lot of past research has been carried out to study the response of structures equipped with energy-absorbing devices by assuming that the behavior of the beam-column systems are linearly elastic. However, linear theory may not be adequate for beams and columns during severe earthquakes. This paper presents the results of research on the nonlinear responses of structures with and without added passive devices under earthquakes. A new material model based on the plasticity theory and the two-surface model for beams and columns under six components of forces is proposed to predict the nonlinear behavior of beam-column systems. And a new nonlinear beam element in consideration of shear deformation is developed to analyze the beams and columns of a structure. Numerical results reveal that linear assumption may not be appropriate for beams and columns under seismic loadings, especially for unexpectedly large earthquakes. Also, it may be necessary to adopt nonlinear beam elements in the analysis and design process to assure the safety of structures with or without the control of devices.

Establishment of an Occupant Analysis modeling for Automobile Side Impact Using ATB Software (ATB 소프트웨어를 이용한 측면충돌시 승랙거동해석 모델링의 확립 및 분석)

  • 임재문;최중원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.85-96
    • /
    • 1996
  • Most protection systems such as seat belts and airbags are not effective means for side structure. There has been significant effort in the automobile industries in seeking other protective methods, such as stiffer structure and padding on the door inner panel. Therefore, a car-to-car side impact model has been developed using ATB occupant simulation program and validated for test data of the vehicle. Compared to the existing side impact models, the developed model has a more detailed vehicle side structure representation for the more realistic impact response of the door. This model include impact bar which effectively increases the side structure stiffness without reduction of space between the occupant and the door and padding for absorbing impact energy. The established model is applied to a 4-door vehicle. The parameter study indicated that a stiffer impact bar would reduce both the acceleration-based criteria, such as thoracic trauma index: TTI(d), and deformation-based criteria, such as viscous criterion(VC). Padding on the door inner panel would reduce TTI(d) while VC gives the opposite indication in a specified thickness range. For a 4-door vehicle, the stiffness enhancement of B-pillar is more beneficial than that of A-pillar for occupant injury severity indices.

  • PDF

Crashworthiness Analysis of the Urban Maglev Vehicle according to Korean Railway Safety Law and Urban Transit Safety Law (철도안전법과 도시철도안전법을 적용한 도시형 자기부상열차의 충돌안전도 해석)

  • Lee, Hyun-Cheol;Koo, Jeong-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.115-126
    • /
    • 2009
  • This paper studied on the application of the crashworthiness regulations of Korean Railway Safety Law and Urban Transit Safety Law to the urban Maglev vehicle of KIMM. The Urban Maglev vehicle has to comply with the crashworthiness regulations for urban transit vehicles. The collision load cases have been simulated by using explicit finite element analysis. From the numerical results, the crashworthiness regulations of the Urban Transit Safety Law were completely satisfied, but maximum crash pulse requirement in 25 km/h crash event and no plastic deformation requirement in 10 km/h crash event in the Korean Railway Safety Law were not. If a commercial urban Maglev vehicle is developed in the near future, it is necessary that some soft buffing and energy absorbing devices are adopted in its front end so as to satisfy the crashworthiness regulations of the Korean Railway Safety Law.

Crash FE Analysis of Front Side Assembly of Passenger Cars for Management of Collapse Shape Via Variation of Thickness with Reverse Engineering (승용차용 프론트 사이드 조립체의 박판 두께 조정에 따른 붕괴모드 제어에 관한 역설계적 유한요소 층돌해석)

  • Kim, Yong-Woo;Kim, Jeong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2008
  • The goal of crashworthiness is an optimized vehicle structure that can absorb the crash energy by controlled vehicle deformations while maintaining adequate space so that the residual crash energy can be managed by the restraint systems to minimize crash loads transfer to the vehicle occupants. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on auto-makers and size of vehicles. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of a passenger car to investigate the effect of thickness distribution of the front side assembly on the collapse shape, which is important in the aspect of controlling deformation to maintain adequate space, from the viewpoint of reverse engineering. To do this, we have performed crash FE analysis for the assembly by varying the thickness distribution of the assembly.

Optimized Design of a Press Cutter by a Taguchi's Experimental Method (다구찌 실험법에 의한 프레스 커터의 최적설계)

  • Han, Joo-Hyun;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2005
  • The press cutter is productive equipment that practically manufactures mechanical components and polymer-based materials such as fabrics, papers, films, leathers, and rubbers into the desired shapes using a press cutting tool. The plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event between a press cutter and a material on a die. The cutting mechanism is complicated and involves plastic flows of a plate in the vicinity of the tip, friction between the wedge and the plate, deformation of the plate. In this paper, we studied the effect of friction between cutter and plastic sheet far producing precise and superior products. In this paper, the press cutter is analyzed numerically using MARC finite element program for a optimization design of a press cutter. The FEM computed results show that the maximum von Mises stress is concentrated on the tip of a press cutter, which may lead to the edge wear or impact wear of the sharp cutter. Based on the FEM result and Taguchi's experimental design method, the optimized design model 9 for a press cutter is recommended as a best one.

A Study on Development of the Hybrid Shock Absorber for Lunar Lander (달 착륙선 하이브리드 충격 흡수장치의 개발에 관한 연구)

  • Lee, Jaehyeong;Hwang, Jai-hyuk;Bae, Jae-sung;Lim, Jaehyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.81-86
    • /
    • 2012
  • The shock absorber is very important in various mechanical field. Without the shock absorber, the structure might be broken. For lunar lander, honeycomb shock absorber to absorber the shock by using plastic deformation of honeycomb has been used. It is cheap and simple to use but impossible using again without changing the honeycomb. The oleo-pneumatic type shock absorber is not able to use in the cosmos because it is vacuum and its temperature. This study suggests the hybrid shock absorber combined spring-ratchet mechanical shock absorber and eddy current electromagnetic damper. The ratchet restricts rebound of lunar lander and the spring converts the impact energy to the potential energy of the spring. The eddy current damper dissipates the impact energy by eddy current force without contact between the parts. This hybrid shock absorber is reusable while the honeycomb shock absorber isn't. The impact absorbing test of the hybrid shock absorber was carried out. This paper shows that the compared results the hybrid shock absorber with ratchet and without ratchet and evaluates the possibility of using for lunar lander.

  • PDF