JSTS:Journal of Semiconductor Technology and Science
/
v.17
no.1
/
pp.86-93
/
2017
In this paper, we propose a novel defect detection method using component tree representations of scanning electron microscopy (SEM) images. The component tree contains rich information about the topological structure of images such as the stiffness of intensity changes, area, and volume of the lobes. This information can be used effectively in detecting suspicious defect areas. A quasi-linear algorithm is available for constructing the component tree and computing these attributes. In this paper, we modify the original component tree algorithm to be suitable for our defect detection application. First, we exclude pixels that are near the ground level during the initial stage of component tree construction. Next, we detect significant lobes based on multiple attributes and edge information. Our experiments performed with actual SEM wafer images show promising results. For a $1000{\times}1000$ image, the proposed algorithm performed the whole process in 1.36 seconds.
In this paper, we consider a method for estimating a stripe-type defect and the reconstruction of a defect-free L/S type mask used in lithography. Comparing diffraction patterns of defected and defect-free masks, we derive equations for the estimation of the location and size of the defect. We construct an analytical model for this problem and derive closed form equations to determine the location and size using phase retrieval problem solving techniques. Consequently, we develop an algorithm that determines a defect-free mask pattern. An example shows the validity of the equations.
International conference on construction engineering and project management
/
2024.07a
/
pp.327-334
/
2024
Bridge inspection is crucial for infrastructure maintenance. Current inspections based on computer vision primarily focus on identifying simple defects such as cracks or corrosion. These detection results can serve merely as preliminary references for bridge inspection reports. To generate detailed reports, on-site engineers must still present the structural conditions through lengthy textual descriptions. This process is time-consuming, costly, and prone to human error. To bridge this gap, we propose a deep learning-based framework to generate detailed and accurate textual descriptions, laying the foundation for automating bridge inspection reports. This framework is built around an encoder-decoder architecture, utilizing Convolutional Neural Networks (CNN) for encoding image features and Gated Recurrent Units (GRU) as the decoder, combined with a dynamically adaptive attention mechanism. The experimental results demonstrate this approach's effectiveness, proving that the introduction of the attention mechanism contributes to improved generation results. Moreover, it is worth noting that, through comparative experiments on image restoration, we found that the model requires further improvement in terms of explainability. In summary, this study demonstrates the potential and practical application of image captioning techniques for bridge defect detection, and future research can further explore the integration of domain knowledge with artificial intelligence (AI).
Kusukawa and Ohta presented the $CS_{CQ-r}$ chart to monitor the process defect $rate{\lambda}$ in high-yield processes that is derived from the count of defects. The $CS_{CQ-r}$ chart is more sensitive to $monitor{\lambda}$ than the CQ (Cumulative Quantity) chart proposed by Chan et al.. As a more superior chart in high-yield processes, we propose a Synthetic chart that is the integration of the CQ_-r chart and the $CS_{CQ-r}$chart. The quality characteristic of both charts is the number of units y required to observe r $({\geq}2)$ defects. It is assumed that this quantity is an Erlang random variable from the property that the quality characteristic of the CQ chart follows the exponential distribution. In use of the proposed Synthetic chart, the process is initially judged as either in-control or out-of-control by using the $CS_{CQ-r}$chart. If the process was not judged as in-control by the $CS_{CQ-r}$chart, the process is successively judged by using the $CQ_{-r}$chart to confirm the judgment of the $CS_{CQ-r}$chart. Through comparisons of ARL (Average Run Length), the proposed Synthetic chart is more superior to monitor the process defect rate in high-yield processes to the stand-alone $CS_{CQ-r}$ chart.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.26
no.9
/
pp.73-79
/
2012
In this paper, we study on how to determine the number of hidden layer neurons in neural network for predicting defect size of steam generator tube. It was reported in the literature that the number of hidden layer neurons can be efficiently determined with the help of cross-validation. Although the cross-validation provides decent estimation performance in most cases, the performance depends on the selection of validation set and rather poor performance may be led to in some cases. In order to avoid such a problem, we propose to use multifold cross-validation. Through the simulation study, it is shown that the estimation performance of defect width (defect depth, respectively) attains 94% (99.4%, respectively) of the best performance achievable among the considered neuron numbers.
In this paper a new defect detection method for flat panel display that does not require any separately prepared reference images and shows robustness against problems with regard to pixel tolerance and nonuniform illumination condition is proposed. In order to perform defect detection under any magnification value of camera, the proposed method automatically obtains the value of pattern interval through an image analysis. Using the information for pattern interval, an advanced PCSR-G method presented in this paper utilizes neighboring patterns as its reference images instead of utilizing any separately prepared reference images. Also this paper proposes a scheme to improve the performance of the conventional PCSR-G method by extracting and applying additional information for pixel tolerance and intensity distribution considering the value of pattern interval. Simulation results show that the performance of the proposed method utilizing pixel tolerance and intensity distribution is superior to that of the conventional method. Also, it is proved that the proposed method that is implemented using parallel technique based on GPGPU can be applied to real system.
The thermal behavior of Flow Pattern Defect (FPD) and Large Pit (LP) in Czochralski Silicon crystal was investigated by applying high temperature annealing ($\geq$$1100^{\circ}C$) and non-agitated Secco etching. For evaluation of the effect of LP upon device performance/yield, commercial DRAM and ASIC devices were fabricated. The results indicated that high temperature annealing generates LPs whereas it decreases FPD density drastically. However, the origins of FPD and LP seemed to be quite different by not showing any correspondence to their density and the location of LP generation and FPD extinction. By not showing any difference between the performance/yield of devices whose design rule is larger than 0.35 $\mu\textrm{m}$, LP seemed not to have detrimental effects on the performance/yield.
In this article, we conducted molecular dynamics simulations to investigate the effect of applied strain and temperature on irradiation-induced damage in alpha-zirconium. Cascade simulations were performed with primary knock-on atom energies ranging between 1 and 20 KeV, hydrostatic and uniaxial strain values ranging from -2% (compression) to 2% (tensile), and temperatures ranging from 100 to 1000 K. Results demonstrated that the number of defects increased when the displacement cascade proceeded under tensile uniaxial hydrostatic strain. In contrast, compressive strain states tended to decrease the defect production rate as compared with the reference no-strain condition. The proportions of vacancy and interstitial clustering increased by approximately 45% and 55% and 25% and 32% for 2% hydrostatic and uniaxial strain systems, respectively, as compared with the unstrained system, whereas both strain fields resulted in a 15-30% decrease in vacancy and interstitial clustering under compressive conditions. Tensile strains, specifically hydrostatic strain, tended to produce larger sized vacancy and interstitial clusters, whereas compressive strain systems did not significantly affect the size of defect clusters as compared with the reference no-strain condition. The influence of the strain system on radiation damage became more significant at lower temperatures because of less annealing than in higher temperature systems.
Optical-fiber electronic speckle pattern interferometry (ESPI) is a non-contact, non-destructive examination technique with the advantages of rapid measurement, high accuracy, and full-field measurement. The optical-fiber ESPI system used in this study was compact and portable with the advantages of easy set-up and signal acquisition. By suitably configuring the optical-fiber ESPI system, producing an image signal in a charge-coupled device camera, and periodically modulating beam phases, we obtained phase information from the speckle pattern using a four-step phase shifting algorithm. Moreover, we compared the actual defect size with that of interference fringes which appeared on a screen after calculating the pixel value according to the distance between the object and the CCD camera. Conventional methods of measuring defects are time-consuming and resource-intensive because the estimated values are relative. However, our simple method could quantitatively estimate the defect length by carrying out numerical analysis for obtaining values on the X-axis in a line profile. The results showed reliable values for average error rates and a decrease in the error rate with increasing defect length or pressure.
Tire wear and defect are important factors for safe driving condition. These defects are generally inspected by some specialized experts or very expensive equipments such as stereo depth camera and depth gauge. In this paper, we propose tire safety vision inspector based on deep neural network (DNN). The status of tire wear is categorized into three: 'safety', 'warning', and 'danger' based on depth of tire tread. We propose an attention mechanism for emphasizing the feature of tread area. The attention-based feature is concatenated to output feature maps of the last convolution layer of ResNet-101 to extract more robust feature. Through experiments, the proposed tire wear classification model improves 1.8% of accuracy compared to the existing ResNet-101 model. For detecting the tire defections, the developed tire defect detection model shows up-to 91% of accuracy using the Mask R-CNN model. From these results, we can see that the suggested models are useful for checking on the safety condition of working tire in real environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.