
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.1.086 ISSN(Online) 2233-4866

Manuscript received Oct. 20, 2016; accepted Dec. 27, 2016
1 Dept. of Nano Science Technology Graduate School, Chonbuk
National University.
2 Dept. of Computer Science and Engineering Graduate School,
Chonbuk National University
E-mail : isoh@jbnu.ac.kr

Automatic Defect Detection from SEM Images of
Wafers using Component Tree

Sunghyon Kim1 and Il-seok Oh1,2

Abstract—In this paper, we propose a novel defect
detection method using component tree
representations of scanning electron microscopy
(SEM) images. The component tree contains rich
information about the topological structure of images
such as the stiffness of intensity changes, area, and
volume of the lobes. This information can be used
effectively in detecting suspicious defect areas. A
quasi-linear algorithm is available for constructing
the component tree and computing these attributes.
In this paper, we modify the original component tree
algorithm to be suitable for our defect detection
application. First, we exclude pixels that are near the
ground level during the initial stage of component
tree construction. Next, we detect significant lobes
based on multiple attributes and edge information.
Our experiments performed with actual SEM wafer
images show promising results. For a 1000 × 1000
image, the proposed algorithm performed the whole
process in 1.36 seconds.

Index Terms—Inspection, defect detection, component
tree, semiconductor, SEM images

I. INTRODUCTION

Fast and reliable inspection technology is essential for
improving yield and productivity in semiconductor

device fabrication [1, 2]. For this purpose, various
inspection technologies for silicon wafers have been
developed and used. The inspection of silicon wafers to
identify defects is usually performed by analyzing
scanning electron microscopy (SEM) images of the
wafers, but this image processing is made difficult by the
diversity and irregularity of the defects, the many noise
sources in SEM image generation, and the unpredictable
variations in the device fabrication.

Many approaches have been proposed and are being
used in actual production processes. Yum, Koo and Kim,
in their review of existing analyses of defective patterns
[3], classified methods as either automatic detection only
or automatic detection and classification, and then
described the unique features of each method. Huang and
Pan presented a taxonomy of visual inspection
algorithms which classified algorithms into four method
categories—projection, filter-based, learning-based and
hybrid methods [4]. Their taxonomy scheme also
categorized the algorithms with respect to three kinds of
semiconductor products to which the algorithms have
been applied—wafers, thin-film-transistor liquid-crystal
displays (TFT-LCDs) and light-emitting diodes. In his
review, Xie classified approaches as being either
statistical, structural, filter-based, model-based, or color-
based [5] and discussed important issues such as the need
for standard databases and standard experimental
protocols.

The top-hat transformation of the morphological
algorithm is a general inspection algorithm in the
manufacturing industry. It is simple and effective, but its
performance is greatly dependent on the definition of the
structure element. Since it uses a peeling operation, a
defect region might be divided into several regions and

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 87

failure is highly probable for elongated defect regions
such as scratch defects. Recently, the quad-tree algorithm
has been applied to identify defects in SEM images [6].
Recognizing that defective areas tend to be
inhomogeneous, this method divides each image block
into four quadrants recursively if the inhomogeneity of
the block is greater than a certain threshold. This
algorithm is effective in finding the approximate
locations of defects, but pre-processing steps, such as
edge relaxation, is essential to achieve good performance.
In addition, an additional process is necessary to obtain
more information about the detected defect areas. The
algorithm is likely to split a defect region into different
quadrants, which can result in a false positive or false
negative. Additionally, neither the top-hat or quad-tree
algorithm can properly deal with images containing
uneven background.

In this paper, we propose a novel defect detection
algorithm that uses the component tree as a data structure,
whereby SEM images can be viewed as a topographic
map. By analyzing this map, we can extract rich
information that is useful for detecting suspicious defect
regions. The component tree is an adequate framework
for representing topographic structures and provides an
efficient algorithm for computing the rich information.
Here we present a modification of the component tree
algorithm that is suitable for extracting several attributes
such as area, height, volume, and stiffness. These
accurate attribute values can be obtained even from
images with uneven background brightness. The
attributes can then be used to determine highly probable
defect regions with complex shapes such as elongation.
We note that the conventional methods, such as the
morphological and quad-tree algorithms, cannot process
images with uneven brightness and complex shapes. We
performed experiments with actual SEM images, printed
electronic images, and generated promising results.
Another merit of the proposed algorithm is the high
speed of its processing. For a 1000 × 1000 image, the
proposed algorithm performed the whole process in 1.36
seconds.

II. METHODS

The input of our algorithm is the difference image
obtained by aligning two segments of an SEM image or

two different SEM images.
In this paper, we modify the original component tree

algorithm to be able to perform defect detection in
various ways. We describe these modifications in the
following sections.

1. Building the Component Tree

We use the algorithm proposed by Najman to build a

component tree in quasi-linear time [8]. A component is
the set of connected pixels that survives after
thresholding. When we increase the threshold level, the
number of components increases and an inclusion
relation appears between the previous and current
components. In this way, the components are organized
into a tree structure. Fig. 1 shows an example of a
component tree.

This algorithm, which is based on Tarjan’s union-find
procedure, first sorts the pixels into non-decreasing order
and then processes the pixels in that order by inserting
them into the tree one at a time.

2. Building Component Tree Excluding Dark Pixels

Regions of suspicious defects are usually brighter than

normal regions and they occupy very small parts of the
entire image. Areas consisting of sufficiently low gray-
level pixels are unlikely to be defects. Therefore, in the
first stage of bucket sorting, we may exclude pixels
whose intensity is lower than the preset ground level.
This simple idea results in a great speed up with no
degradation in the defect identification.

Since this modification generates an incomplete
component tree consisting of several subtrees, in the final
stage of the algorithm we categorize these subtrees as
children of a virtual root node. Fig. 1(e) shows the results
of the modified algorithm when the ground level is set to
100.

3. Computing Attribute Values and Detecting Defects

The authors in [8] describe an efficient algorithm for

computing the attribute values of the area and volume of
each node in the component tree and identifying
significant lobes by the volume attribute. To identify
significant lobes, the original algorithm repeatedly

88 SUNGHYON KIM et al : AUTOMATIC DEFECT DETECTION FROM SEM IMAGES OF WAFERS USING COMPONENT TREE

deletes leaf nodes in decreasing order of volume. In this
process, a parent that loses every child becomes a leaf.
The algorithm repeats this process until n leaf nodes
remain, with n being the desired number of lobes. The
pseudo code of the algorithm can be sketched as follows.
Here, we provide only a brief sketch, and a more detailed
description of the algorithm may be found in [8].

Algorithm 1: Finding significant lobes (original

algorithm in [8])
Input: n (number of significant lobes desired),
component tree T

Output: n leaf nodes representing the most significant
lobes

1. while number of leaf nodes in T > n
2. select a leaf node with the smallest volume;
3. delete the selected leaf node from T;
4. output the leaf nodes;

We consider the remaining n leaf nodes to be

significant lobes and, as such, defective areas. Since the
original algorithm uses only the volume attribute to find
significant lobes, it is seriously affected by the number of
significant lobes n. If n is too small, the algorithm will
delete most of the nodes and identify nodes near the root
of the tree as significant lobes. In many cases, the result
is not what we expect, as seen in Fig. 4(a)-(c). Usually
the remaining lobes are those resulting from the merging
of non-defective areas. In order to realize good
performance, we must set n to be close to the number of
actual defects in the difference image. However, it is
very difficult to determine a priori the number of defects
in an image.

To solve this problem, we use not only the volume
attribute but also other attributes such as area and
gradient magnitude. We describe these details in the
following section.

4. Using Multiple Attributes and Edge Information

In this section, we describe two algorithms we use to

solve the problems noted above. The first deals with an
easy case of detecting defects of similar sizes and shapes,
and the second deals with more a complicated case
involving defects of various sizes and shapes.

Case 1. Defects of nearly fixed sizes and shapes

Fig. 2(a) and (b) show patches of an SEM wafer image

provided by a semiconductor manufacturing company
and Fig. 2(c) shows their difference image. We see that
the defects have nearly uniform sizes and shapes. In this
simple case, we could define an approximate defect size,
which is related to the area attribute. The modified
algorithm uses both the volume and area attributes, and
repeats the operation of deleting leaf nodes in decreasing
order of volume, as in Algorithm 1. The algorithm
exempts leaf nodes from deletion whose parent area is

Fig. 1. (a) Example image with three gray levels, (b), (c) Binary
images after thresholding at 200 and 100, respectively, (d) The
component tree of (a), (e) The modified component tree of (a)
composed of pixels whose gray levels are higher than 100.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 89

bigger than a, where a is a predefined area threshold. The
user sets a to the minimum area of a defect. When no
more leaf nodes are found, the process is complete. Then,
the n nodes with the largest volume are output as
suspicious defects. Algorithm 2 shows the pseudo code
of the above process.

Algorithm 2: Finding significant lobes by area

attribute
Input: n (number of significant lobes desired),
area threshold a, component tree T
Output: n leaf nodes representing the most significant

lobes
1. while unprocessed leaf node is in T
2. select a leaf node with the smallest volume;
3. if (area of parent of the leaf node < a)
delete the leaf node from T;
4. else push the leaf node into list L;
5. output n nodes in L with the largest volume;

Case 2. Defects of various sizes and shapes

Fig. 3 shows an example test image of a printed

pattern provided by a visual inspection company. The
original image is very large, so we cut out the defect
areas and pasted them into one image, Fig. 3, for testing.
Note that the defects have different sizes and shapes as
well as uneven brightness. Careful inspection reveals that
the background also has uneven brightness. If we apply
Algorithm 2 to this case, performance would be very
poor because it is almost impossible to capture all the
defects of various sizes.

Thus, we consider edge information since the edges
can indicate the contours of the defects. We may choose
to detect edges and extract regions by identifying closed
contours. However, this approach fails due to the
phenomenon of fragmented edge segments. Instead, we
decided to embed the edge information as an attribute in
the component tree. Two options are available—we can
use a binary edge map or a gradient magnitude map. Due
to the larger computational demand and increased noise
associated with a binary edge map, we opted for the
gradient magnitude map. Generally, the gradient
magnitude reaches a peak near the object contour. So, the
proposed algorithm traces the path from a leaf node to
the root and attempts to identify the node with the
maximum gradient attribute.

During tree construction, a component, i.e., a node,
also computes the gradient attribute by averaging the
gradient magnitude map obtained by the use of a Sobel
mask.

The algorithm visits leaf nodes in decreasing order of
volume and traces upward to the root node. It identifies
nodes with the maximum gradient attribute value and
saves these nodes to a list. Then the n nodes with the
largest volume are output as suspicious defects.
Algorithm 3 shows the pseudo code of the above process.

Algorithm 3: Finding significant lobes by edge-

gradient attribute
Input: n (number of significant lobes desired),
 component tree T
Output: n nodes representing the most significant

lobes
1. while unprocessed leaf node in T
2. select an unvisited leaf node with the smallest
volume;
3. trace upward to the root and search for the node

Fig. 2. (a), (b) Two aligned wafer SEM image segments, (c)
Difference image.

Fig. 3. Example patch from a printed pattern image.

90 SUNGHYON KIM et al : AUTOMATIC DEFECT DETECTION FROM SEM IMAGES OF WAFERS USING COMPONENT TREE

with the largest gradient attribute;
4. push the node into list L;
5. output n nodes in L with the largest volume;

III. EXPERIMENTS AND DISCUSSIONS

1. Experimental Results

We implemented the algorithm in C++ language and

tested it on a 3.30-GHz PC. Fig. 4 shows the suspicious
defects of the input image identified by the original
algorithm (Algorithm 1) and Algorithm 2 described
above. With the original algorithm, neighboring
insignificant lobes are merged into one lobe, with the
resultant lobes having a large volume, which were then
detected as defects. In contrast, the proposed algorithm
correctly detected the candidate defects.

Fig. 5 compares the computation time of the original
algorithm with those of Algorithm 2, which achieved

about a tenfold speed up. For a 1000 × 1000 image, the
proposed algorithm ran the whole process in 1.36
seconds. Via parallelism to build the component tree,
further speed up is easily achieved by the use of multi-
cores or GPUs.

Fig. 6 shows the suspicious defects of the input image

Fig. 4. (a), (b), and (c) One, two, and five most significant lobes
of the input image using the original algorithm, (d), (e), and (f)
One, two, and five most significant lobes of the input image
using the modified algorithm, Algorithm 2.

Fig. 5. Computation time of whole process according to image
size.

Fig. 6. (a), (b), and (c) One, two, and five most significant lobes
of the input image using Algorithm 2, (d), (e), and (f) One, two,
and five most significant lobes of the input image using
Algorithm 3.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 91

produced by Algorithms 2 and 3 described in section 2.4.
The output from Algorithm 2 is not satisfactory. In
contrast, Algorithm 3 correctly detects the candidate
defects. Note that the detection results are satisfactory for
a variety of shapes such as elongation due to a scratch
and for uneven brightness.

2. Comparision of Three Algorithms

We noted above the applicable images of the three

algorithms. Here, we supplement those discussions.
Algorithm 1 was successful for cases in which the defect
area and background have a clear separation of high
contrast and the designated number of defects N is
properly set to be similar to the actual number of defects.
However, in our experiments with real images, noises
present during image acquisition and small blobs due to
slight misalignments caused failure. Setting N to be too
small caused the algorithm to trace upward near the root,
thus resulting in a high computation time.

The experiments with various images showed that
Algorithm 2 works stably in situations in which the
defect shapes and sizes are homogeneous. Since
Algorithm 2 works without edge information and is
faster than Algorithm 3, we highly recommend the use of
Algorithm 2 in this situation. As expected, Algorithm 3
works well when heterogeneous defects exist in an image,
but the extra edge extraction processing slows its
performance. A node in the tree contains rich information
including the attributes of area, volume, roundness,
elongation, and slope stiffness. As such, Algorithm 3 can
be readily extended to particular defect type
classifications.

3. Comparision with Quad-tree Algorithm

We implemented the quad-tree algorithm in [6] and

compared it with the proposed algorithms. Quad-tree
algorithm has two essential parameters, adaptive
decomposition threshold(ADT) and defect block size
Since the default parameter setting produced very poor
results, we tried to find out the optimal values. Fig. 7
shows the results obtained by applying the quad-tree
algorithm to the input image in Fig. 6. It illustrates
effects of varying the parameter value.

In Fig. 7, we can observe some missing and merged

defects. The quad-tree algorithm is susceptible to
parameter setting. The rightmost figure shows the
optimal setting.

Table 1 compares the proposed algorithms and the
quad-tree algorithm in various aspects. Due to the
recursive partition operation into four quadrants, the
quad-tree algorithm requires the images with 2 2n n´
size. For the images violating the size requirement, rows
and column should be appended. The proposed
algorithms have the advantage of being less sensitive to
noises than the quad-tree algorithm. To reduce the noise
effect, the quad-tree algorithm performs a preprocessing.
The output of the proposed algorithms is the blobs
cutting out the potential defects. In addition, valuable
features are automatically produced. The features can be
used as input to a classifier such as multi-layer
perceptron. On the contrary, the quad-tree algorithm
indicates the potential defects by overlapping boxes. So
additional post-processing should be developed to cut out
the defect area and extract features. The quad-tree
algorithm is faster than the proposed algorithms.
However the speed comparison is not shown since their
outputs are different. The quad-tree algorithm should

Fig. 7. Detection result of the input image I in Fig. 6 using
quad-tree algorithm with various parameter values (a) ADT =

() 3 (),mean I std I+ ´ (b) () 3 (),ADT mean I std I= + ´ (c) ADT
() ()mean I std I= + .

Table 1. Comparison between component tree algorithms and
quad-tree algorithm

Component tree

Algorithm 2 Algorithm 3
Quad-tree

Image size Arbitrary 2 2n n´
Prior knowledge Blob size None None

Sensitivity to noise Small Large

Output Blobs Overlapping
boxes

Features
Rich

(area, volume, brightness,
stiffness, etc.)

None

92 SUNGHYON KIM et al : AUTOMATIC DEFECT DETECTION FROM SEM IMAGES OF WAFERS USING COMPONENT TREE

further perform a post-processing stage to get blobs and
extract features.

IV. CONCLUSIONS

Defects occurring on uneven background and having
various sizes and shapes are difficult to detect by
conventional methods. To overcome these difficulties and
process large images quickly, in this paper, we propose a
novel method based on the component tree data structure.
This method considers the image as a topographic map
and builds a component tree in quasi-linear time with
respect to various attributes. These attributes are used to
define and detect suspicious defect regions. Recognizing
that the significant lobes detected by the original
algorithm do not provide satisfactory results, we
modified the algorithm to better detect defects. We
proposed two algorithms, one for the easy case of
detecting defects of somewhat uniform size and shape
and the other for the more difficult case of defects with
various sizes and shape. We carried out experiments with
actual images, which showed promising results for both
cases. The proposed algorithm is also very fast due to the
quasi-linearity of the component tree.

A limitations of our proposed method is that, as yet,
the performance evaluation has been only qualitative. To
perform a quantitative assessment, a large dataset divided
into training and test sets must be prepared and every
example image properly tagged according to defect type
by a highly qualified field expert. While Lee and Lee
used their own dataset to quantitatively evaluate their
quad-tree algorithm [6], their dataset is not available to
the public. Finally, there exists no standard dataset or
standard evaluation protocol. We may ascribe this
situation to the fact that the objects to be inspected are so
diverse—ranging from microscopic materials such as the
semiconductor to large surfaces such as steel plates.
Another reason seems to be the secrecy of companies
who are highly competitive. However, in order to adopt
state-of-the-art technologies, such as machine learning,
large datasets and standard performance protocols are
essential. We are supported in our argument by Xie's
remark in [5] that “There is also a clear need of some
standard datasets and well-defined experimental
protocols in order to carry out fair comparative analysis.”

REFERENCES

[1] R. T. Chin and C. A. Harlow, “Automated Visual
Inspection: A survey,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, Vol.4,
No.6, pp.557-573, Nov., 1982.

[2] R. T. Chin, “Automated visual inspection: 1981 to
1987,” Computer Vision, Graphics and Image
Processing, Vol.41, Issue 3, pp.346-381, Mar.,
1988.

[3] B.-J Yum, J. H. Koo and S.-J Kim, “Analysis of
Defective Patterns on Wafers in Semiconductor
Manufacturing: A Bibliographical Review,”
Automation Science and Engineering, 8th IEEE
International Conference on, pp.86-90, Aug., 2012.

[4] S.-H. Huang and Y.-C. Pan, “Automated visual
inspection in the semiconductor industry: A
survey,” Computers in Industry, Vol.66, pp.1-10,
2015.

[5] X. Xie, “A Review of Recent Advances in Surface
Defect Detection using Texture analysis
Techniques,” Electronic Letters on Computer
Vision and Image Analysis, Vol.7, No.3, pp.1-22,
2008.

[6] Y. Lee and J. Lee, “Accurate Automatic Defect
Detection Method Using Quadtree Decomposition
on SEM Images,” Semiconductor Manufacturing,
IEEE Transactions on, Vol. 27, No.2, pp.223-231,
May, 2014.

[7] W.-C. Li and D.-M. Tsai, “Defect Inspection in
Low-Contrast LCD Images Using Hough
Transform-Based Nonstationary Line Detection,”
Industrial Informatics, IEEE Transactions on,
Vol.7, No.1, pp.136-147, Feb., 2011.

[8] L. Najman and M. Couprie, “Building the
Component Tree in Quasi-Linear Time,” Image
Processing, IEEE Transactions on, Vol.15, No.11,
pp.3531-3539, Nov., 2006.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 93

Sung-hyon Kim received a B.S.
degree from the Department of
Electronic Engineering at Chonbuk
National University, Jeonju, Korea,
in 2011 and is currently pursuing her
Ph.D. in the Department of Nano
Science Technology. She is currently

a research student of KRISS (Korea Research Institute of
Standards and Science). Her interests include inspection
and particle segmentation & analysis using image
processing and computer vision techniques.

Il-seok Oh received a B.S. degree in
computer engineering from Seoul
National University, Korea, and his
PhD in computer science from
KAIST (Korea Advanced Institute of
Science and Technology), Korea, in
1984 and 1992, respectively. He was

a visiting professor at Concordia University, Canada
(1996) and the University of California, Irvine (2012).
His research interests include machine learning, pattern
recognition, and computer vision.

