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Abstract—In this paper, we propose a novel defect 
detection method using component tree 
representations of scanning electron microscopy 
(SEM) images. The component tree contains rich 
information about the topological structure of images 
such as the stiffness of intensity changes, area, and 
volume of the lobes. This information can be used 
effectively in detecting suspicious defect areas. A 
quasi-linear algorithm is available for constructing 
the component tree and computing these attributes. 
In this paper, we modify the original component tree 
algorithm to be suitable for our defect detection 
application. First, we exclude pixels that are near the 
ground level during the initial stage of component 
tree construction. Next, we detect significant lobes 
based on multiple attributes and edge information. 
Our experiments performed with actual SEM wafer 
images show promising results. For a 1000 × 1000 
image, the proposed algorithm performed the whole 
process in 1.36 seconds.    
 
Index Terms—Inspection, defect detection, component 
tree, semiconductor, SEM images    

I. INTRODUCTION 

Fast and reliable inspection technology is essential for 
improving yield and productivity in semiconductor 

device fabrication [1, 2]. For this purpose, various 
inspection technologies for silicon wafers have been 
developed and used. The inspection of silicon wafers to 
identify defects is usually performed by analyzing 
scanning electron microscopy (SEM) images of the 
wafers, but this image processing is made difficult by the 
diversity and irregularity of the defects, the many noise 
sources in SEM image generation, and the unpredictable 
variations in the device fabrication. 

Many approaches have been proposed and are being 
used in actual production processes. Yum, Koo and Kim, 
in their review of existing analyses of defective patterns 
[3], classified methods as either automatic detection only 
or automatic detection and classification, and then 
described the unique features of each method. Huang and 
Pan presented a taxonomy of visual inspection 
algorithms which classified algorithms into four method 
categories—projection, filter-based, learning-based and 
hybrid methods [4]. Their taxonomy scheme also 
categorized the algorithms with respect to three kinds of 
semiconductor products to which the algorithms have 
been applied—wafers, thin-film-transistor liquid-crystal 
displays (TFT-LCDs) and light-emitting diodes. In his 
review, Xie classified approaches as being either 
statistical, structural, filter-based, model-based, or color-
based [5] and discussed important issues such as the need 
for standard databases and standard experimental 
protocols. 

The top-hat transformation of the morphological 
algorithm is a general inspection algorithm in the 
manufacturing industry. It is simple and effective, but its 
performance is greatly dependent on the definition of the 
structure element. Since it uses a peeling operation, a 
defect region might be divided into several regions and 
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failure is highly probable for elongated defect regions 
such as scratch defects. Recently, the quad-tree algorithm 
has been applied to identify defects in SEM images [6]. 
Recognizing that defective areas tend to be 
inhomogeneous, this method divides each image block 
into four quadrants recursively if the inhomogeneity of 
the block is greater than a certain threshold. This 
algorithm is effective in finding the approximate 
locations of defects, but pre-processing steps, such as 
edge relaxation, is essential to achieve good performance. 
In addition, an additional process is necessary to obtain 
more information about the detected defect areas. The 
algorithm is likely to split a defect region into different 
quadrants, which can result in a false positive or false 
negative. Additionally, neither the top-hat or quad-tree 
algorithm can properly deal with images containing 
uneven background. 

In this paper, we propose a novel defect detection 
algorithm that uses the component tree as a data structure, 
whereby SEM images can be viewed as a topographic 
map. By analyzing this map, we can extract rich 
information that is useful for detecting suspicious defect 
regions. The component tree is an adequate framework 
for representing topographic structures and provides an 
efficient algorithm for computing the rich information. 
Here we present a modification of the component tree 
algorithm that is suitable for extracting several attributes 
such as area, height, volume, and stiffness. These 
accurate attribute values can be obtained even from 
images with uneven background brightness. The 
attributes can then be used to determine highly probable 
defect regions with complex shapes such as elongation. 
We note that the conventional methods, such as the 
morphological and quad-tree algorithms, cannot process 
images with uneven brightness and complex shapes. We 
performed experiments with actual SEM images, printed 
electronic images, and generated promising results. 
Another merit of the proposed algorithm is the high 
speed of its processing. For a 1000 × 1000 image, the 
proposed algorithm performed the whole process in 1.36 
seconds. 

II. METHODS 

The input of our algorithm is the difference image 
obtained by aligning two segments of an SEM image or 

two different SEM images. 
In this paper, we modify the original component tree 

algorithm to be able to perform defect detection in 
various ways. We describe these modifications in the 
following sections. 

 
1. Building the Component Tree 

 
We use the algorithm proposed by Najman to build a 

component tree in quasi-linear time [8]. A component is 
the set of connected pixels that survives after 
thresholding. When we increase the threshold level, the 
number of components increases and an inclusion 
relation appears between the previous and current 
components. In this way, the components are organized 
into a tree structure. Fig. 1 shows an example of a 
component tree. 

This algorithm, which is based on Tarjan’s union-find 
procedure, first sorts the pixels into non-decreasing order 
and then processes the pixels in that order by inserting 
them into the tree one at a time. 

 
2. Building Component Tree Excluding Dark Pixels 

 
Regions of suspicious defects are usually brighter than 

normal regions and they occupy very small parts of the 
entire image. Areas consisting of sufficiently low gray-
level pixels are unlikely to be defects. Therefore, in the 
first stage of bucket sorting, we may exclude pixels 
whose intensity is lower than the preset ground level. 
This simple idea results in a great speed up with no 
degradation in the defect identification. 

Since this modification generates an incomplete 
component tree consisting of several subtrees, in the final 
stage of the algorithm we categorize these subtrees as 
children of a virtual root node. Fig. 1(e) shows the results 
of the modified algorithm when the ground level is set to 
100. 

 
3. Computing Attribute Values and Detecting Defects 

 
The authors in [8] describe an efficient algorithm for 

computing the attribute values of the area and volume of 
each node in the component tree and identifying 
significant lobes by the volume attribute. To identify 
significant lobes, the original algorithm repeatedly 
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deletes leaf nodes in decreasing order of volume. In this 
process, a parent that loses every child becomes a leaf. 
The algorithm repeats this process until n leaf nodes 
remain, with n being the desired number of lobes. The 
pseudo code of the algorithm can be sketched as follows. 
Here, we provide only a brief sketch, and a more detailed 
description of the algorithm may be found in [8]. 

 
Algorithm 1: Finding significant lobes (original 

algorithm in [8]) 
Input: n (number of significant lobes desired), 
component tree T 

Output: n leaf nodes representing the most significant 
lobes 

1. while number of leaf nodes in T > n 
2.    select a leaf node with the smallest volume; 
3.    delete the selected leaf node from T; 
4. output the leaf nodes; 
 
We consider the remaining n leaf nodes to be 

significant lobes and, as such, defective areas. Since the 
original algorithm uses only the volume attribute to find 
significant lobes, it is seriously affected by the number of 
significant lobes n. If n is too small, the algorithm will 
delete most of the nodes and identify nodes near the root 
of the tree as significant lobes. In many cases, the result 
is not what we expect, as seen in Fig. 4(a)-(c). Usually 
the remaining lobes are those resulting from the merging 
of non-defective areas. In order to realize good 
performance, we must set n to be close to the number of 
actual defects in the difference image. However, it is 
very difficult to determine a priori the number of defects 
in an image. 

To solve this problem, we use not only the volume 
attribute but also other attributes such as area and 
gradient magnitude. We describe these details in the 
following section. 

 
4. Using Multiple Attributes and Edge Information 

 
In this section, we describe two algorithms we use to 

solve the problems noted above. The first deals with an 
easy case of detecting defects of similar sizes and shapes, 
and the second deals with more a complicated case 
involving defects of various sizes and shapes. 

 
Case 1. Defects of nearly fixed sizes and shapes 
 
Fig. 2(a) and (b) show patches of an SEM wafer image 

provided by a semiconductor manufacturing company 
and Fig. 2(c) shows their difference image. We see that 
the defects have nearly uniform sizes and shapes. In this 
simple case, we could define an approximate defect size, 
which is related to the area attribute. The modified 
algorithm uses both the volume and area attributes, and 
repeats the operation of deleting leaf nodes in decreasing 
order of volume, as in Algorithm 1. The algorithm 
exempts leaf nodes from deletion whose parent area is 

 

Fig. 1. (a) Example image with three gray levels, (b), (c) Binary 
images after thresholding at 200 and 100, respectively, (d) The 
component tree of (a), (e) The modified component tree of (a) 
composed of pixels whose gray levels are higher than 100. 
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bigger than a, where a is a predefined area threshold. The 
user sets a to the minimum area of a defect. When no 
more leaf nodes are found, the process is complete. Then, 
the n nodes with the largest volume are output as 
suspicious defects. Algorithm 2 shows the pseudo code 
of the above process. 

 
Algorithm 2: Finding significant lobes by area 

attribute 
Input: n (number of significant lobes desired), 
area threshold a, component tree T 
Output: n leaf nodes representing the most significant 

lobes 
1. while unprocessed leaf node is in T 
2.    select a leaf node with the smallest volume; 
3.    if (area of parent of the leaf node < a) 
delete the leaf node from T; 
4.    else push the leaf node into list L; 
5. output n nodes in L with the largest volume; 
 
Case 2. Defects of various sizes and shapes 
 
Fig. 3 shows an example test image of a printed 

pattern provided by a visual inspection company. The 
original image is very large, so we cut out the defect 
areas and pasted them into one image, Fig. 3, for testing. 
Note that the defects have different sizes and shapes as 
well as uneven brightness. Careful inspection reveals that 
the background also has uneven brightness. If we apply 
Algorithm 2 to this case, performance would be very 
poor because it is almost impossible to capture all the 
defects of various sizes. 

Thus, we consider edge information since the edges 
can indicate the contours of the defects. We may choose 
to detect edges and extract regions by identifying closed 
contours. However, this approach fails due to the 
phenomenon of fragmented edge segments. Instead, we 
decided to embed the edge information as an attribute in 
the component tree. Two options are available—we can 
use a binary edge map or a gradient magnitude map. Due 
to the larger computational demand and increased noise 
associated with a binary edge map, we opted for the 
gradient magnitude map. Generally, the gradient 
magnitude reaches a peak near the object contour. So, the 
proposed algorithm traces the path from a leaf node to 
the root and attempts to identify the node with the 
maximum gradient attribute. 

During tree construction, a component, i.e., a node, 
also computes the gradient attribute by averaging the 
gradient magnitude map obtained by the use of a Sobel 
mask. 

The algorithm visits leaf nodes in decreasing order of 
volume and traces upward to the root node. It identifies 
nodes with the maximum gradient attribute value and 
saves these nodes to a list. Then the n nodes with the 
largest volume are output as suspicious defects. 
Algorithm 3 shows the pseudo code of the above process. 

 
Algorithm 3: Finding significant lobes by edge-

gradient attribute 
Input: n (number of significant lobes desired), 
 component tree T 
Output: n nodes representing the most significant 

lobes 
1. while unprocessed leaf node in T 
2.    select an unvisited leaf node with the smallest 
volume; 
3.    trace upward to the root and search for the node 

 

Fig. 2. (a), (b) Two aligned wafer SEM image segments, (c) 
Difference image. 

 

 

Fig. 3. Example patch from a printed pattern image. 
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with the largest gradient attribute; 
4.    push the node into list L; 
5. output n nodes in L with the largest volume; 

III. EXPERIMENTS AND DISCUSSIONS 

1. Experimental Results 
 
We implemented the algorithm in C++ language and 

tested it on a 3.30-GHz PC. Fig. 4 shows the suspicious 
defects of the input image identified by the original 
algorithm (Algorithm 1) and Algorithm 2 described 
above. With the original algorithm, neighboring 
insignificant lobes are merged into one lobe, with the 
resultant lobes having a large volume, which were then 
detected as defects. In contrast, the proposed algorithm 
correctly detected the candidate defects. 

Fig. 5 compares the computation time of the original 
algorithm with those of Algorithm 2, which achieved 

about a tenfold speed up. For a 1000 × 1000 image, the 
proposed algorithm ran the whole process in 1.36 
seconds. Via parallelism to build the component tree, 
further speed up is easily achieved by the use of multi-
cores or GPUs. 

Fig. 6 shows the suspicious defects of the input image 

 

Fig. 4. (a), (b), and (c) One, two, and five most significant lobes 
of the input image using the original algorithm, (d), (e), and (f) 
One, two, and five most significant lobes of the input image 
using the modified algorithm, Algorithm 2. 
 

 

Fig. 5. Computation time of whole process according to image 
size. 

 

 

Fig. 6. (a), (b), and (c) One, two, and five most significant lobes 
of the input image using Algorithm 2, (d), (e), and (f) One, two, 
and five most significant lobes of the input image using 
Algorithm 3. 
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produced by Algorithms 2 and 3 described in section 2.4. 
The output from Algorithm 2 is not satisfactory. In 
contrast, Algorithm 3 correctly detects the candidate 
defects. Note that the detection results are satisfactory for 
a variety of shapes such as elongation due to a scratch 
and for uneven brightness. 

 

2. Comparision of Three Algorithms 
 
We noted above the applicable images of the three 

algorithms. Here, we supplement those discussions. 
Algorithm 1 was successful for cases in which the defect 
area and background have a clear separation of high 
contrast and the designated number of defects N is 
properly set to be similar to the actual number of defects. 
However, in our experiments with real images, noises 
present during image acquisition and small blobs due to 
slight misalignments caused failure. Setting N to be too 
small caused the algorithm to trace upward near the root, 
thus resulting in a high computation time. 

The experiments with various images showed that 
Algorithm 2 works stably in situations in which the 
defect shapes and sizes are homogeneous. Since 
Algorithm 2 works without edge information and is 
faster than Algorithm 3, we highly recommend the use of 
Algorithm 2 in this situation. As expected, Algorithm 3 
works well when heterogeneous defects exist in an image, 
but the extra edge extraction processing slows its 
performance. A node in the tree contains rich information 
including the attributes of area, volume, roundness, 
elongation, and slope stiffness. As such, Algorithm 3 can 
be readily extended to particular defect type 
classifications. 

 

3. Comparision with Quad-tree Algorithm 
 
We implemented the quad-tree algorithm in [6] and 

compared it with the proposed algorithms. Quad-tree 
algorithm has two essential parameters, adaptive 
decomposition threshold(ADT) and defect block size  
Since the default parameter setting produced very poor 
results, we tried to find out the optimal values. Fig. 7 
shows the results obtained by applying the quad-tree 
algorithm to the input image in Fig. 6. It illustrates 
effects of varying the parameter value. 

In Fig. 7, we can observe some missing and merged 

defects. The quad-tree algorithm is susceptible to 
parameter setting. The rightmost figure shows the 
optimal setting.  

Table 1 compares the proposed algorithms and the 
quad-tree algorithm in various aspects. Due to the 
recursive partition operation into four quadrants, the 
quad-tree algorithm requires the images with 2 2n n´  
size. For the images violating the size requirement, rows 
and column should be appended. The proposed 
algorithms have the advantage of being less sensitive to 
noises than the quad-tree algorithm. To reduce the noise 
effect, the quad-tree algorithm performs a preprocessing. 
The output of the proposed algorithms is the blobs 
cutting out the potential defects. In addition, valuable 
features are automatically produced. The features can be 
used as input to a classifier such as multi-layer 
perceptron. On the contrary, the quad-tree algorithm 
indicates the potential defects by overlapping boxes. So 
additional post-processing should be developed to cut out 
the defect area and extract features. The quad-tree 
algorithm is faster than the proposed algorithms. 
However the speed comparison is not shown since their 
outputs are different. The quad-tree algorithm should 

 

Fig. 7. Detection result of the input image I in Fig. 6 using 
quad-tree algorithm with various parameter values (a) ADT =  

( ) 3 ( ),mean I std I+ ´ (b) ( ) 3 ( ),ADT mean I std I= + ´ (c) ADT  
( ) ( )mean I std I= + .   

 
Table 1. Comparison between component tree algorithms and 
quad-tree algorithm 

Component tree 
 

Algorithm 2 Algorithm 3 
Quad-tree 

Image size Arbitrary 2 2n n´  
Prior knowledge Blob size None None 

Sensitivity to noise Small Large 

Output Blobs Overlapping 
boxes 

Features 
Rich 

(area, volume, brightness, 
stiffness, etc.) 

None 
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further perform a post-processing stage to get blobs and 
extract features. 

IV. CONCLUSIONS 

Defects occurring on uneven background and having 
various sizes and shapes are difficult to detect by 
conventional methods. To overcome these difficulties and 
process large images quickly, in this paper, we propose a 
novel method based on the component tree data structure. 
This method considers the image as a topographic map 
and builds a component tree in quasi-linear time with 
respect to various attributes. These attributes are used to 
define and detect suspicious defect regions. Recognizing 
that the significant lobes detected by the original 
algorithm do not provide satisfactory results, we 
modified the algorithm to better detect defects. We 
proposed two algorithms, one for the easy case of 
detecting defects of somewhat uniform size and shape 
and the other for the more difficult case of defects with 
various sizes and shape. We carried out experiments with 
actual images, which showed promising results for both 
cases. The proposed algorithm is also very fast due to the 
quasi-linearity of the component tree. 

A limitations of our proposed method is that, as yet, 
the performance evaluation has been only qualitative. To 
perform a quantitative assessment, a large dataset divided 
into training and test sets must be prepared and every 
example image properly tagged according to defect type 
by a highly qualified field expert. While Lee and Lee 
used their own dataset to quantitatively evaluate their 
quad-tree algorithm [6], their dataset is not available to 
the public. Finally, there exists no standard dataset or 
standard evaluation protocol. We may ascribe this 
situation to the fact that the objects to be inspected are so 
diverse—ranging from microscopic materials such as the 
semiconductor to large surfaces such as steel plates. 
Another reason seems to be the secrecy of companies 
who are highly competitive. However, in order to adopt 
state-of-the-art technologies, such as machine learning, 
large datasets and standard performance protocols are 
essential. We are supported in our argument by Xie's 
remark in [5] that “There is also a clear need of some 
standard datasets and well-defined experimental 
protocols in order to carry out fair comparative analysis.” 
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