• Title/Summary/Keyword: defect engineering

Search Result 2,235, Processing Time 0.032 seconds

Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform

  • Gucunski, Nenad;Kee, Seong-Hoon;La, Hung;Basily, Basily;Maher, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.19-34
    • /
    • 2015
  • One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in bridge deck assessment is the speed of data collection and analysis. The paper describes development and implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple NDE technologies. The system is designed to characterize three most common deterioration types in concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. The technologies are used in a complementary way to enhance the interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE equipment. The robotic system is complemented by an advanced data interpretation. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. This paper concentrates on the validation and field implementation of two NDE technologies. The first one is IE used in the delamination detection and characterization, while the second one is the USW method used in the assessment of concrete quality. The validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated bridge structure with numerous artificial defects embedded in the deck.

Development of an Sampling Tube for Organic Solvents and Study on the Adsorption Capacity of the Activated Charcoal (유기용제용 시료채취기 개발을 위한 활성탄 성능검정에 관한 연구)

  • Bai, Ya Soung;Park, Doo Young;Lim, Dai Soung;Park, Byung Moo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.8-18
    • /
    • 2005
  • Adsorption capacity for the charcoal were tasted in this study to verify the performance of them for the use of the sampling media in industrial hygiene field. Two set of experiments were conducted. The first experiment was to test performance of the tested charcoal tube that were assembled in the laboratory with the use of the GR grade charcoal. The other tests were investigate the adsorption capacity of the charcoal tested in this study and charcoals embedded in the commercial charcoal tubes. Known air concentration samples for benzene, toluene, and o-xylene were prepared by the dynamic chamber. 1. At low air concentration levels (0.1${\times}$TLV), there was no significant differences between the tested charcoal tubes and the SKC charcoal tubes. This implies that there is no defect with the adsorption capacity of the charcoal. 2. At high concentration with 60 minutes sampling, the breakthrough were found only in the tested charcoal while no breakthrough were shown in the SKC charcoal. 3. From the breakthrough tests for the charcoal, the micropore volume(Wo) were calculated by the curve fitting with the use of Dubinin/Radushkevich(D/R) adsorption isotherm equation. The calculated values were 0.687cc/g for SKC, 0.504cc/g for Sensidyne, and 0.419cc/g for the tested charcoal(Aldrich). 4. Adsorption capacities were obtained from the isotherm curves shown adsorption capacities at several levels of the challenge concentration. All range of the air concentration concerned in industrial hygiene, the SKC charcoal showed approximately two times of adsorption capacity compared to the tested charcoal.

Fabrication and Characterization of Conjugated Polymer Nanowires with Uniformed Size (AAO 템플레이트을 이용한 균일한 공액고분자 나노와이어)

  • Khim, Dongyoon;Kim, Dong-Yu;Noh, Yong-Young
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.205-208
    • /
    • 2014
  • Here, we reported mass-produced organic nanowires with uniform sizes based on poly(9,9-dioctylflurorene) (PFO), poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), (regioregular poly(3-hexylthiophene) (P3HT) which are well known as organic semiconductors for opto/electronics applications, using a melt-assisted wetting method with anodic alumina membrane. The conjugated polymer nanowires showed uniformed diameters (D=250~300 nm) and lengths ($L={\sim}30{\mu}m$) with defect free smooth surface regardless of a kinds of semiconductors. In addition, the nanowires were uniformly deposited onto glass substrates by spray-coating method. Under the UV light irradiation, PFO and F8BT nanowires showed blue and yellow emissions, respectively.

Electrical Properties of ZnO-Bi2O3-Co3O4 Varistor (ZnO-Bi2O3-Co3O4 바리스터의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.882-889
    • /
    • 2011
  • In this study, we have investigated the effects of Co doping on I-V curves, bulk trap levels and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. From I-V characteristics the nonlinear coefficient (a) and the grain boundary resistivity (${\rho}_{gb}$) decreased as 32${\rightarrow}$22 and 18.4${\rightarrow}0.6{\times}10^9{\Omega}cm$ with sintering temperature (900~1,300$^{\circ}C$), respectively. Admittance spectra and dielectric functions show two bulk traps of zinc interstitial, $Zn_i^{{\cdot}{\cdot}}$(0.16~0.18 eV) and oxygen vacancy, $V_o^{{\cdot}}$ (0.28~0.33 eV). The barrier of grain boundaries in ZBCo (ZnO-$Bi_2O_3-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.93 eV at the 460~580 K to 1.13 eV at the 620~700 K. It is revealed that Co dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

Analysis of a.c. Characteristics in ZnO-Bi2O3Cr2O3 Varistor using Dielectric Functions (유전함수를 이용한 ZnO-Bi2O3Cr2O3 바리스터의 a.c. 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.368-373
    • /
    • 2010
  • In this study, we have investigated the effects of Cr dopant on the bulk trap levels and grain boundary characteristics of $Bi_2O_3$-based ZnO (ZB) varistor using admittance spectroscopy and dielectric functions (such as $Z^*,\;Y^*,\;M^*,\;{\varepsilon}^*$, and $tan{\delta}$). Admittance spectra show more than two bulk traps of $Zn_i$ and $V_o$ probably in different ionization states in ZnO-$Bi_2O_3-Cr_2O_3$ (ZBCr) system. Three kinds of temperature-dependant activation energies ($E_{bt}'s$) were calculated as 0.11~0.14 eV of attractive coulombic center, 0.16~0.17 eV of $Zn_{\ddot{i}}$, and 0.33 eV of $V_o^{\cdot}$ as dominant bulk defects. The grain boundaries of ZBCr could be electrochemically divided into two types as a sensitive to ambient oxygen i.e. electrically active one and an oxygen-insensitive i.e. electrically inactive one. The grain boundaries were electrically single type under 460 K (equivalent circuit as parallel $R_{gb1}C_{gb1}$) but separated as double one ($R_{gb1}C_{gb1}-R_{gb2}C_{gb2}$) over 480 K. It is revealed that the dielectric functions are very useful tool to separate the overlapped bulk defect levels and to characterize the electrical properties of grain boundaries.

Mode II Fracture Toughness of Hybrid FRCs

  • Abou El-Mal, H.S.S.;Sherbini, A.S.;Sallam, H.E.M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.475-486
    • /
    • 2015
  • Mode II fracture toughness ($K_{IIc}$) of fiber reinforced concrete (FRC) has been widely investigated under various patterns of test specimen geometries. Most of these studies were focused on single type fiber reinforced concrete. There is a lack in such studies for hybrid fiber reinforced concrete. In the current study, an experimental investigation of evaluating mode II fracture toughness ($K_{IIc}$) of hybrid fiber embedded in high strength concrete matrix has been reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction ($V_f$) of 1.5 %. The concrete matrix properties were kept the same for all hybrid FRC patterns. In an attempt to estimate a fairly accepted value of fracture toughness $K_{IIc}$, four testing geometries and loading types are employed in this investigation. Three different ratios of notch depth to specimen width (a/w) 0.3, 0.4, and 0.5 were implemented in this study. Mode II fracture toughness of concrete $K_{IIc}$ was found to decrease with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness $K_{IIc}$ was sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness ($K_{IIc}$). The four point shear test set up reflected the lowest values of mode II fracture toughness $K_{IIc}$ of concrete. The non damage defect concept proved that, double edge notch prism test setup is the most reliable test to measure pure mode II of concrete.

An Effective Design Method of Stamping Process by Feasible Formability Diagram (가용 성형한계영역을 이용한 스템핑 공정의 효율적 설계방법)

  • Cha, Seung-Hoon;Lee, Chan-Joo;Lee, Sang-Kon;Kim, Bong-Hwan;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.108-115
    • /
    • 2009
  • In metal forming technologies, the stamping process is one of the significant manufacturing processes to produce sheet metal components. It is important to design stamping process which can produce sound products without defect such as fracture and wrinkle. The objective of this study is to propose the feasible formability diagram which denotes the safe region without fracture and wrinkle for effective design of stamping process. To determine the feasible formability diagram, FE-analyses were firstly performed for the combinations of process parameters and then the characteristic values for fracture and wrinkle were estimated from the results of FE-analyses based on forming limit diagram. The characteristic values were extended through training of the artificial neural network. The feasible formability diagram was finally determined for various combinations of process parameters. The stamping process of turret suspension to support suspension module was taken as an example to verify the effectiveness of feasible formability diagram. The results of FE-analyses for process conditions within fracture and wrinkle as well as safe regions were in good agreement with experimental ones.

Design of Microstrip PBG structure and Duplexer using PBG Cell with Stub (스텁을 갖는 PBG 셀로 구현한 마이크로스트립 PBG 구조 및 듀플렉서)

  • Jang, Mi-Young;Kee, Chul-Sik;Park, Ik-Mo;Lim, Han-Jo;Kim, Tae-Il;Lee, Jung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.39-48
    • /
    • 2001
  • We have studied the design of the photonic bandgap (PBG) structure on the microstrip line that can effectively control the fractional bandwidth of the passband formed in the stopband by adding the stub in the cell of the microstrip PBG structure. As the length of the stub increases, the cutoff frequency and the center frequency of the stopband are decreased, while the bandwidth of the stopband is increased. We have also found that the fractional bandwidth of the passband formed in stopband by the introduction of defect decreases as the stub length is increased. These results mean that adding the stub in the normal PBG structure is an effective way to control the fractional bandwidth. As an application example, we have implemented a microwave duplexer using the proposed structure.

  • PDF

Effects of Geometry and Imperfection of a Small-sized Groove on Stress Distributions in the Vicinity of the Joined Region of an ABS Part with a Thin Wall (기저부에 생성된 작은 홈 형상과 결함이 박벽이 포함된 ABS 재료로 제작된 제품의 결합 영역 응력 분포에 미치는 영향)

  • Ahn, Dong-Gyu;Hassan, Humayun;Baek, Sun Ho;Kim, Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.81-88
    • /
    • 2020
  • The geometry and the defect of the groove of the part provoke a sudden change of stress in a local region. The objective of this paper is to investigate the effects of the geometry and the imperfection of a small groove on stress distributions in the vicinity of the joined region for the ABS part with a thin wall using a three-dimensional finite element analysis (FEA). Several types of groove are designed to improve joining characteristics in the vicinity joined region. The imperfection model of the small-sized groove is obtained from observation of deposition characteristics of a fused deposition modeling process. Local stress distributions in the vicinity of the joined region are predicted by the FE model with refined meshes. The influence of the angle and the imperfection of the groove on appearance regions of the maximum stress and distributions of the defined principal stress for different loading conditions is examined using the results of FEAs. Finally, a proper design of the groove is proposed to improve joining characteristics between the substrate and the ABS part.

Research on the Relationship between Thermoelectric Module with Defects and Thermal Performances (열전소자 내부 층간 결함과 열성능 관계에 관한 연구)

  • Choi, Choul-Jun;Gao, Jia-Chen;Kim, Jae-Yeol;Jung, Yoon-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2016
  • From the first application of a thermoelectric module to nowtoday, it has been more than half a century. The application of a thermoelectric module is becoming more and more widely accepted since, people's requirement rely more and more on the efficiency of thermoelectric modules and their reliability become higher and higher. So people pay more and more attention to the thermoelectric module. In Around the world, the more research for into improving the efficiency of thermoelectric modules is focused on the current materials. at present. However, the research of into available materials had has some limitations, and the research of materials had reached a bottleneckthere are limits to current applications. On the other hand, from the production process, if we assembled by materials withoutmodules without any damages and achieve the ideal state of a joint, we can make the a product to maximize performance and have a longer service life. SoTherefore, in this study we will prove the relationship between the any defects inside and the efficiency of a thermoelectric module to improve the quality management and performance of modern thermoelectric modules at present.