References
- ACI Commitee 544. (2011). Fiber reinforced concrete. Detroit, MI: American Concrete Institute.
- Al Hazmi, H. S. J., Al Hazmi, W. H., Shubaili, M. A., & Sallam, H. E. M. (2012). Fracture energy of hybrid polypropylene- steel fiber high strength concrete. HPSM, High Performance Structure and Materials, VI, 309-318.
- Banthia, N., & Gupta, R. (2004). Hybrid fiber reinforced concrete: Fiber synergy in high strength matrices. RILEM, Materials and Structures, 37(274), 707-716. https://doi.org/10.1007/BF02480516
- Banthia, N., Moncef, A., Chokri, K., & Sheng, J. (1995). Uniaxial tensile response of microfiber reinforced cement composites. Journal of Materials and Structures, RILEM, 28(183), 507-517. https://doi.org/10.1007/BF02473155
- Banthia, N., & Sheng, J. (1991). Micro reinforced cementitious materials, Materials Research Society Symposia Proceedings, Materials Research Society (Vol 211, pp. 25-32), Pittsburgh, PA.
- Banthia, N., & Soleimani, S. M. (2005). Flexural response of hybrid fiber reinforced cementitious composites. ACI Materials Journal, 102(6), 382-389.
- Bentur, A., & Mindess, S. (1990). Fiber reinforced cementitious composites. London, UK: Elsevier Applied Science.
- Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2012). Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete. Construction and Building Materials, 27, 6-14. https://doi.org/10.1016/j.conbuildmat.2011.07.015
- Feldman, D., & Zheng, Z. (1993). Synthetic fibers for fiber concrete composites, Materials Research Society Symposia Proceedings, Materials Research Society (Vol 305, pp. 123-128), Pittsburgh, PA.
- Iosipescu, N. (1967). New accurate procedure for single shear testing of metals. Journal of Materials, 2(3), 537-566.
- Irobe, M., & Pen, S.-Y. (1992). Mixed-mode and mode II fracture of concrete. In Z. P. Bazant (Ed.), Fracture mechanics of concrete structures (pp. 719-726). New York, NY: Elsevier Applied Science.
- Kamlos, K., Babal, B., & Nurnbergerova, T. (1995). Hybrid fiber reinforced concrete under repeated loading. Nuclear Engineering and Design, 156(1-2), 195-200. https://doi.org/10.1016/0029-5493(94)00945-U
- Kim, N. W., Saeki, N., & Horiguchi, T. (1999). Crack and strength properties of hybrid fiber reinforced concrete at early ages. Transactions of the Japan Concrete Institute, 21, 241-246.
- Larson, E. S., & Krenchel, H. (1991). Durability of FRC-materials. Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA 211, 119-124.
- Lawler, J. S., Zampini, D., & Shah, S. P. (2002). Permeability of cracked hybrid fiber reinforced mortar under load. ACI Materials Journal, 99(4), 379-385.
- Lee, J., & Lopez, M. M. (2014). An experimental study on fracture energy of plain concrete. International Journal of Concrete Structures and Materials, 8(2), 129-139. https://doi.org/10.1007/s40069-014-0068-1
- Li, V. C. (2012). Tailoring ECC for special attributes: A review. International Journal of Concrete Structures and Materials, 6(3), 135-144. https://doi.org/10.1007/s40069-012-0018-8
- Mobasher, B., & Li, C. Y. (1996). Mechanical properties of hybrid cement-based composites. ACI Materials Journal, 93(3), 284-292.
- Prokopski, G. (1991). Influence of water-cement ratio on microcracking of ordinary concrete. Journal of Materials Science, 26, 6352-6356. https://doi.org/10.1007/BF02387814
- Qian, C., & Stroeven, P. (2000). Fracture properties of concrete reinforced with steel-polypropylene hybrid fibers. Cement & Concrete Composites, 22(5), 343-351. https://doi.org/10.1016/S0958-9465(00)00033-0
- Rao, A. G., & Rao, A. S. (2009). Toughness indices of steel fiber reinforced concrete under mode II loading. Materials and Structures, 42, 1173-1184. https://doi.org/10.1617/s11527-009-9543-6
- Reinhardt, H. W., Josko, O., Shilang, X., & Abebe, D. (1997). Shear of structural concrete members and pure mode II testing. Advanced Cement Based Materials, 5, 75-85. https://doi.org/10.1016/S1065-7355(96)00003-X
- Sallam, H. E. M. (2003). Fracture energy of fiber reinforced concrete. Al-Azhar University Engineering Journal, 6, 555-564.
- Sallam, H. E. M., & Mubaraki, M. (2015). Evaluation of the fracture energy methods used in fiber reinforced concrete pavements by the maximum undamaged defect size concept 94th Annual Meeting of TRB, Washington, DC.
- Sallam, H. E. M., Mubaraki, M., & Yusoff, N I Md. (2014). Application of the maximum undamaged defect size (dmax) concept in fiber-reinforced concrete pavements. Arabian Journal for Science and Engineering, 39(12), 8499-8506. https://doi.org/10.1007/s13369-014-1400-4
- Shah, S. P. (1991).Dofibers increase the tensile strength of cement-based matrices. ACI Materials Journal, 88(6), 595-602.
- Sherbini, A. S. (2014). Mode II fracture toughness estimates for fiber reinforced concretes using a variety of testing geometries. Engineering Research Journal, 37(2), 239-246.
- Swartz, S. E., Lu, L. W., Tang, L. D., & Refai, T. M. E. (1988). Mode II fracture-parameter estimates for concrete from beam specimens. Experimental Mechanics, 28, 146-153. https://doi.org/10.1007/BF02317565
- Walton, P. L., & Majumdar, A. J. (1975). Cement-based composites with mixtures of different types of fibers. Composites, 6, 209-216. https://doi.org/10.1016/0010-4361(75)90416-4
- Watkins, J. (1983). Fracture toughness test for soil-cement samples in mode II. International Journal of Fracture, 23, RI35-RI38.
- Xu, G., Magnani, S., & Hannant, D. J. (1998). Durability of hybrid polypropylene-glass fiber cement corrugated sheets. Cement & Concrete Composites, 20(1), 79-84. https://doi.org/10.1016/S0958-9465(97)00075-9
Cited by
- Discussion: Mechanical properties of hybrid fibre-reinforced concrete - analytical modelling and experimental behaviour vol.68, pp.22, 2016, https://doi.org/10.1680/jmacr.16.00243
- Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement vol.10, pp.3, 2015, https://doi.org/10.1007/s40069-016-0148-5
- Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0189-4
- Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2015, https://doi.org/10.1007/s40069-017-0193-8
- Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0195-6
- Hybrid short fiber reinforcement system in concrete: A review vol.142, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2017.03.059
- Flexural Toughness of High-Performance Concrete with Basalt and Polypropylene Short Fibres vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/5024353
- Structural Behavior of RC Beams Containing a Pre- Diagonal Tension Crack vol.15, pp.7, 2015, https://doi.org/10.1590/1679-78254701
- Effect of RAP content on flexural behavior and fracture toughness of flexible pavement vol.16, pp.3, 2015, https://doi.org/10.1590/1679-78255516
- Comparisons Between Pull-Out Behaviour of Various Hooked-End Fibres in Normal-High Strength Concretes vol.13, pp.1, 2015, https://doi.org/10.1186/s40069-019-0337-0
- Flexural fatigue strength prediction of hybrid-fibre-reinforced self-compacting concrete vol.173, pp.5, 2015, https://doi.org/10.1680/jcoma.19.00003
- Reliability study on fracture and fatigue behavior of pavement materials using SCB specimen vol.21, pp.13, 2015, https://doi.org/10.1080/10298436.2018.1555332
- Fracture Models and Effect of Fibers on Fracture Properties of Cementitious Composites—A Review vol.13, pp.23, 2015, https://doi.org/10.3390/ma13235495
- Evaluation of Mode II Fracture Toughness of Hybrid Fibrous Geopolymer Composites vol.14, pp.2, 2021, https://doi.org/10.3390/ma14020349
- Review on NSM CFRP Strengthened RC Concrete Beams in Shear vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/1074010
- Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites vol.13, pp.6, 2015, https://doi.org/10.3390/polym13060864
- Experimental and numerical determination of critical osmotic blister size affecting the strength of aged FRP seawater pipe vol.29, pp.5, 2021, https://doi.org/10.1177/0967391120922397
- Intrinsic fracture toughness of fiber reinforced and functionally graded concretes: An innovative approach vol.258, pp.None, 2021, https://doi.org/10.1016/j.engfracmech.2021.108098