• 제목/요약/키워드: deep neural net machine learning(deep Learning)

검색결과 42건 처리시간 0.029초

Waste Classification by Fine-Tuning Pre-trained CNN and GAN

  • Alsabei, Amani;Alsayed, Ashwaq;Alzahrani, Manar;Al-Shareef, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.65-70
    • /
    • 2021
  • Waste accumulation is becoming a significant challenge in most urban areas and if it continues unchecked, is poised to have severe repercussions on our environment and health. The massive industrialisation in our cities has been followed by a commensurate waste creation that has become a bottleneck for even waste management systems. While recycling is a viable solution for waste management, it can be daunting to classify waste material for recycling accurately. In this study, transfer learning models were proposed to automatically classify wastes based on six materials (cardboard, glass, metal, paper, plastic, and trash). The tested pre-trained models were ResNet50, VGG16, InceptionV3, and Xception. Data augmentation was done using a Generative Adversarial Network (GAN) with various image generation percentages. It was found that models based on Xception and VGG16 were more robust. In contrast, models based on ResNet50 and InceptionV3 were sensitive to the added machine-generated images as the accuracy degrades significantly compared to training with no artificial data.

인공지능 프로세서 기술 동향 (AI Processor Technology Trends)

  • 권영수
    • 전자통신동향분석
    • /
    • 제33권5호
    • /
    • pp.121-134
    • /
    • 2018
  • The Von Neumann based architecture of the modern computer has dominated the computing industry for the past 50 years, sparking the digital revolution and propelling us into today's information age. Recent research focus and market trends have shown significant effort toward the advancement and application of artificial intelligence technologies. Although artificial intelligence has been studied for decades since the Turing machine was first introduced, the field has recently emerged into the spotlight thanks to remarkable milestones such as AlexNet-CNN and Alpha-Go, whose neural-network based deep learning methods have achieved a ground-breaking performance superior to existing recognition, classification, and decision algorithms. Unprecedented results in a wide variety of applications (drones, autonomous driving, robots, stock markets, computer vision, voice, and so on) have signaled the beginning of a golden age for artificial intelligence after 40 years of relative dormancy. Algorithmic research continues to progress at a breath-taking pace as evidenced by the rate of new neural networks being announced. However, traditional Von Neumann based architectures have proven to be inadequate in terms of computation power, and inherently inefficient in their processing of vastly parallel computations, which is a characteristic of deep neural networks. Consequently, global conglomerates such as Intel, Huawei, and Google, as well as large domestic corporations and fabless companies are developing dedicated semiconductor chips customized for artificial intelligence computations. The AI Processor Research Laboratory at ETRI is focusing on the research and development of super low-power AI processor chips. In this article, we present the current trends in computation platform, parallel processing, AI processor, and super-threaded AI processor research being conducted at ETRI.

딥러닝을 활용한 고대 수막새 이미지 분류 검토 (Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images)

  • 김영현
    • 헤리티지:역사와 과학
    • /
    • 제57권3호
    • /
    • pp.24-35
    • /
    • 2024
  • 최근 의료, 제조, 자율주행, 보안 등 다양한 분야에서 인공지능과 컨볼루션 신경망 등 딥러닝 기술을 활용한 연구들이 활발하게 진행되고 있으며, 사회 전반에 적지 않은 영향을 미치고 있다. 본 연구 또한 이러한 흐름에 맞춰서 고고학 유물 분류에 딥러닝을 활용해 보았다. 즉, 연구는 고고학 조사를 통해 출토된 고대 수막새의 이미지 분류에 딥러닝 기술을 적용하는 초보적 시도로서, 고구려, 백제, 신라 시대의 수막새 이미지를 CNN 모델로 학습시켜 분류를 진행하였다. 고구려, 백제, 신라 수막새 이미지 각각 100장씩 총 300장을 기반으로 기본 데이터셋을 형성하였고, 데이터 증강 기법을 활용하여 4배를 증가시킴으로써 총 1,200장을 데이터셋으로 구축하였다. 사전 훈련된 EfficientNetB0 모델의 전이학습을 통하여 모델을 구축한 후, 5겹 교차검증을 실시한 결과 평균 학습 정확도 98.06%, 검증 정확도 97.08%를 기록하였다. 또한 학습된 모델을 240장의 테스트 데이터셋으로 성능을 평가한 결과, 최소 91% 이상의 높은 정확도로 삼국의 수막새 이미지를 시대별로 구분할 수 있음을 확인하였다. 특히 학습률 0.0001에서 정확도 92.92%, 정밀도 92.96%, 재현율 92.92%, F1 점수 92.93%로 가장 우수한 성능을 보였는데, 이는 다양한 학습률 설정을 통하여 과적합과 과소적합 문제를 방지함과 동시에 최적의 매개변수를 찾는 과정에서 이루어졌다. 본 연구의 결과는 한국 고고학 자료의 분류에 딥러닝 기술 활용 가능성을 확인했다는 점에서 의의가 있다고 생각된다. 또한 기존에 축적·제작된 ImageNet 데이터셋 및 파라미터가 고고 자료 분석에도 긍정적으로 적용할 수 있음을 확인하였다. 이러한 접근은 향후 고고학 데이터베이스 축적이나 활용, 박물관의 유물 분류 및 정리 등 다양한 방식의 모델을 창출할 수 있을 것이다.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.

A computer vision-based approach for behavior recognition of gestating sows fed different fiber levels during high ambient temperature

  • Kasani, Payam Hosseinzadeh;Oh, Seung Min;Choi, Yo Han;Ha, Sang Hun;Jun, Hyungmin;Park, Kyu hyun;Ko, Han Seo;Kim, Jo Eun;Choi, Jung Woo;Cho, Eun Seok;Kim, Jin Soo
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.367-379
    • /
    • 2021
  • The objectives of this study were to evaluate convolutional neural network models and computer vision techniques for the classification of swine posture with high accuracy and to use the derived result in the investigation of the effect of dietary fiber level on the behavioral characteristics of the pregnant sow under low and high ambient temperatures during the last stage of gestation. A total of 27 crossbred sows (Yorkshire × Landrace; average body weight, 192.2 ± 4.8 kg) were assigned to three treatments in a randomized complete block design during the last stage of gestation (days 90 to 114). The sows in group 1 were fed a 3% fiber diet under neutral ambient temperature; the sows in group 2 were fed a diet with 3% fiber under high ambient temperature (HT); the sows in group 3 were fed a 6% fiber diet under HT. Eight popular deep learning-based feature extraction frameworks (DenseNet121, DenseNet201, InceptionResNetV2, InceptionV3, MobileNet, VGG16, VGG19, and Xception) used for automatic swine posture classification were selected and compared using the swine posture image dataset that was constructed under real swine farm conditions. The neural network models showed excellent performance on previously unseen data (ability to generalize). The DenseNet121 feature extractor achieved the best performance with 99.83% accuracy, and both DenseNet201 and MobileNet showed an accuracy of 99.77% for the classification of the image dataset. The behavior of sows classified by the DenseNet121 feature extractor showed that the HT in our study reduced (p < 0.05) the standing behavior of sows and also has a tendency to increase (p = 0.082) lying behavior. High dietary fiber treatment tended to increase (p = 0.064) lying and decrease (p < 0.05) the standing behavior of sows, but there was no change in sitting under HT conditions.

학습 데이터가 없는 모델 탈취 방법에 대한 분석 (Analysis of methods for the model extraction without training data)

  • 권현;김용기;이준
    • 융합보안논문지
    • /
    • 제23권5호
    • /
    • pp.57-64
    • /
    • 2023
  • 딥뉴럴네트워크 모델의 취약점으로 모델 탈취 방법이 있다. 이 방법은 대상 모델에 대하여 여러번의 반복된 쿼리를 통해서 유사 모델을 생성하여 대상 모델의 예측값과 동일하게 내는 유사 모델을 생성하는 것이다. 본 연구에서, 학습 데이터가 없이 대상 모델을 탈취하는 방법에 대해서 분석을 하였다. 생성 모델을 이용하여 입력 데이터를 생성하고 대상 모델과 유사 모델의 예측값이 서로 가까워지도록 손실함수를 정의하여 유사 모델을 생성한다. 이 방법에서 대상 모델의 입력 데이터에 대한 각 클래스의 logit(로직) 값을 이용하여 경사하강법으로 유사 모델이 그것과 유사하도록 학습하는 과정을 갖는다. 실험 환경으로 pytorch 머신러닝 라이브러리를 이용하였으며, 데이터셋으로 CIFAR10과 SVHN을 사용하였다. 대상 모델로 ResNet 모델을 이용하였다. 실험 결과로써, 모델 탈취 방법은 CIFAR10에 대해서 86.18%이고 SVHN에 대해서 96.02% 정확도로 대상 모델과 유사한 예측값을 내는 유사 모델을 생성하는 것을 볼 수가 있었다. 추가적으로 모델 탈취 방법에 대한 고려사항와 한계점에 대한 고찰도 분석하였다.

데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안 (Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning)

  • 김영준;김여정;이인선;이홍주
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2019
  • 인공지능 기술이 발전하면서 이미지, 음성, 텍스트 등 다양한 분야에 적용되고 있으며, 데이터가 충분한 경우 기존 기법들에 비해 좋은 결과를 보인다. 주식시장은 경제, 정치와 같은 많은 변수에 의해 영향을 받기 때문에, 주식 가격의 움직임 예측은 어려운 과제로 알려져 있다. 다양한 기계학습 기법과 인공지능 기법을 이용하여 주가 패턴을 연구하여 주가의 등락을 예측하려는 시도가 있어왔다. 본 연구는 딥러닝 기법 중 컨볼루셔널 뉴럴 네트워크(CNN)를 기반으로 주가 패턴 예측률 향상을 위한 데이터 증강 방안을 제안한다. CNN은 컨볼루셔널 계층을 통해 이미지에서 특징을 추출하여 뉴럴 네트워크를 이용하여 이미지를 분류한다. 따라서, 본 연구는 주식 데이터를 캔들스틱 차트 이미지로 만들어 CNN을 통해 패턴을 예측하고 분류하고자 한다. 딥러닝은 다량의 데이터가 필요하기에, 주식 차트 이미지에 다양한 데이터 증강(Data Augmentation) 방안을 적용하여 분류 정확도를 향상 시키는 방법을 제안한다. 데이터 증강 방안으로는 차트를 랜덤하게 변경하는 방안과 차트에 가우시안 노이즈를 적용하여 추가 데이터를 생성하였으며, 추가 생성된 데이터를 활용하여 학습하고 테스트 집합에 대한 분류 정확도를 비교하였다. 랜덤하게 차트를 변경하여 데이터를 증강시킨 경우의 분류 정확도는 79.92%였고, 가우시안 노이즈를 적용하여 생성된 데이터를 가지고 학습한 경우의 분류 정확도는 80.98%이었다. 주가의 다음날 상승/하락으로 분류하는 경우에는 60분 단위 캔들 차트가 82.60%의 정확도를 기록하였다.

  • PDF

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

신경망 내 잔여 블록을 활용한 콕스 모델 개선: 자궁경부암 사망률 예측모형 연구 (Cox Model Improvement Using Residual Blocks in Neural Networks: A Study on the Predictive Model of Cervical Cancer Mortality)

  • 이낭경;김주영;탁지수;이형록;전현지;양지명;이승원
    • 정보처리학회 논문지
    • /
    • 제13권6호
    • /
    • pp.260-268
    • /
    • 2024
  • 자궁경부암은 전 세계적으로 여성에게 발생하는 암 중 네 번째로 흔한 암이며, 2020년 한 해 동안 60만 4천 건 이상의 신규 케이스가 보고되었고 이로 인한 사망자 수는 약 34만 1천 831명에 달했다. 콕스 회귀 모델은 암 연구에서 널리 채택되고 있는 주요 모델이지만, 비선형 연관성의 존재를 고려하면 선형 가정으로 인해 한계에 부딪힌다. 이러한 문제를 해결하기 위해, 본 논문에서는 ResNet의 잔여 학습 프레임워크를 활용하여 자궁경부암 사망률 예측의 정확성을 개선한 새로운 모델인 ResSurvNet을 제안한다. 이 모델은 본 연구에서 비교한 DNN, CPH, CoxLasso, Cox Gradient Boost, RSF 모델들을 능가하는 정확도를 보여주었기에 이러한 우수한 예측 성능은 자궁경부암 환자 관리에 있어 조기 진단 및 치료 전략 수립에 기여할 수 있고 임상적으로 적용할 때 큰 가치가 있음을 입증하며, 생존 분석 분야에서도 의미 있는 진전을 나타낸다.

농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가 (Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4)

  • 차성은;원명수;장근창;김경민;김원국;백승일;임중빈
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1273-1283
    • /
    • 2022
  • 최근 기후변화로 인해 중대형 산불이 빈번하게 발생하여 매년 인명 및 재산피해로 이어지고 있다. 원격탐사를 활용한 산불 피해지 모니터링 기법은 신속한 정보와 대규모 피해지의 객관적인 결과를 취득할 수 있다. 본 연구에서는 산불 피해지를 분류하기 위해 Sentinel-2의 분광대역, 정규식생지수(normalized difference vegetation index, NDVI), 정규수역지수(normalized difference water index, NDWI)를 활용하여 2022년 3월 발생한 강릉·동해 산불 피해지를 대상으로 U-net 기반 convolutional neural networks (CNNs) 딥러닝 모형을 모의하였다. 산불 피해지 분류 결과 강릉·동해 산불 피해지의 경우 97.3% (f1=0.486, IoU=0.946)로 분류 정확도가 높았으나, 과적합(overfitting)의 가능성을 배제하기 어려워 울진·삼척 지역으로 동일한 모형을 적용하였다. 그 결과, 국립산림과학원에서 보고한 산불 피해 면적과의 중첩도가 74.4%로 확인되어 모형의 불확도를 고려하더라도 높은 수준의 정확도를 확인하였다. 본 연구는 농림위성과 유사한 분광대역을 선택적으로 사용하였으며, Sentinel-2 영상을 활용한 산불 피해지 분류가 정량적으로 가능함을 시사한다.