본 논문에서는 머리카락과 모자 영역의 마스크 정보를 활용하여 더 자연스러운 얼굴 속성 편집(facial attribute editing)을 수행하는 모델을 제안한다. 최신 얼굴 속성 편집 연구인 STGAN은 다중 얼굴 속성을 자연스럽게 편집하는 성과를 보였다. 그러나 머리카락과 관련된 속성을 편집할 때 부자연스러운 결과를 생성할 수 있다. 제안하는 방법의 핵심 아이디어는 기존 모델에서 부족했던 얼굴 영역의 정보를 모델에 추가로 반영하는 것이다. 이를 위해 세 가지 아이디어를 적용한다. 첫째로 마스크를 통해 머리카락 면적 속성을 추가하여 머리카락 정보를 보완한다. 둘째로 순환 일관성 손실(cycle consistency loss)을 추가하여 영상의 불필요한 변화를 억제한다. 셋째로 모자 분할 신경망을 추가하여 모자 영역 왜곡을 방지한다. 정성적 평가를 통해 제안하는 방법 적용 여부에 따른 유효성을 평가 및 분석한다. 실험 결과에서 제안하는 방법이 머리카락 및 얼굴 영역을 더 자연스럽게 생성하고, 모자 영역의 왜곡을 성공적으로 방지했다.
고성능 CPU/GPU의 개발과 심층신경망 등의 인공지능 알고리즘, 그리고 다량의 데이터 확보를 통해 기계학습이 다양한 응용 분야로 확대 적용되고 있다. 특히, 사물인터넷, 사회관계망서비스, 웹페이지, 공공데이터로부터 수집된 다량의 데이터들이 기계학습의 활용에 가속화를 가하고 있다. 기계학습을 위한 학습 데이터세트는 응용 분야와 데이터 종류에 따라 다양한 형식으로 존재하고 있어 효과적으로 데이터를 처리하고 기계학습에 적용하기에 어려움이 따른다. 이에 본 논문은 표준화된 절차에 따라 기계학습을 위한 학습 데이터세트를 구축하기 위한 방안을 연구하였다. 먼저 학습 데이터세트가 갖추어야할 요구사항을 문제 유형과 데이터 유형별로 분석하였다. 이를 토대로 기계학습 활용을 위한 학습 데이터세트 구축에 관한 참조모델을 제안하였다. 또한 학습 데이터세트 구축 참조모델을 국제 표준으로 개발하기 위해 대상 표준화 기구의 선정 및 표준화 전략을 제시하였다.
세계 각국에서 환경규제를 강화하고 생활 폐기물을 줄이기 위해서 노력하고 있다. 우리나라 역시 자원의 절약과 재활용촉진을 위한 법률을 제정하여 에너지자원순환을 위해 노력하고 있다. 정부에서는 빈병 재활용을 위하여 빈용기 보증금 제도를 시행하고 있지만 인력을 통한 회수는 한계가 존재하며, 빈병무인회수기 또한 국산화가 되어 있지 않은 관계로 시행 효과가 미비한 상황이다. 본 논문에서는 에너지자원순환을 촉진하기 위해서 빈병무인회수기에서 필수적으로 요구되는 병 인식 및 보증금 환불을 위한 병 분류 알고리즘을 제안하였다. 제안 알고리즘은 OpenCV와 CNN을 이용한 복합 식별 알고리즘으로서 제안 알고리즘의 효용성 평가를 위하여 빈병무인회수기에서 동작하는 분류 시스템을 구현하여 다양한 디바이스에서 빈병 정보 및 무인회수기에 대한 정보를 쉽게 획득할 수 있도록 하였다.
다중작업학습(Multi-Task Learning, MTL) 기법은 하나의 신경망을 통해 다양한 작업을 동시에 수행하고 각 작업 간에 상호적으로 영향을 미치면서 학습하는 방식을 말한다. 본 연구에서는 전통문화 말뭉치를 직접 구축 및 학습데이터로 활용하여 다중작업학습 기법을 적용한 개체명 인식 모델에 대해 성능 비교 분석을 진행한다. 학습 과정에서 각각의 품사 태깅(Part-of-Speech tagging, POS-tagging) 과 개체명 인식(Named Entity Recognition, NER) 학습 파라미터에 대해 Bi-LSTM 계층을 통과시킨 후 각각의 Bi-LSTM을 계층을 통해 최종적으로 두 loss의 joint loss를 구한다. 결과적으로, Bi-LSTM 모델을 활용하여 단일 Bi-LSTM 모델보다 MTL 기법을 적용한 모델에서 1.1%~4.6%의 성능 향상이 있음을 보인다.
본 논문에서는 학습 기반 압축 센싱 기법을 이용한 측면주사 소나 영상의 비균일 잡음 제거 알고리즘을 제안한다. 제안하는 기법은 Iterative Shrinkage and Thresholding Algorithm(ISTA) 알고리즘을 기반으로 하고 있으며 성능 향상을 위해 학습네트워크의 비선형성을 강화시키는 전략을 선택하였다. 제안된 구조는 입력 신호를 비선형 변환과 초기화 하는 부분, Sparse 공간으로 변환 및 역변환하는 ISTA block, 특징 공간에서 픽셀 공간으로 변환하는 부분으로 구성된다. 제안된 기법은 다양한 모의 실험을 통해 잡음 제거 성능 및 메모리 효율성 측면에서 우수함이 입증되었다.
본 논문은 소외계층 아동의 운동학습프로그램에서 체력 활동 중 나를 잘 따른다(0-9), 마음의 결정을 내리는데 많은 시간이 걸린다(0-9), 맥빠진(0-9) 등을 변수로 사용하여 '성별', '체육교실', 나이의 '상중하'를 분류하고 스포츠 재활치료를 통한 자아 탄력(ego-resiliency)과 자아 통제(self-control)의 변화를 관찰하여 정신 건강 변화를 알아본다. 이를 위해 취득한 데이터를 병합하고 Label encoder와 One-hot encoding을 사용하여 숫자의 크고 작음의 특성을 제거한 후 MLP, SVM, Dicesion tree, RNN, LSTM의 각각의 알고리즘을 적용하여 성능을 평가하기 위해 Train, Test 데이터를 75%, 25% 스플릿 한 뒤 Train 데이터로 알고리즘을 학습하고 Test 데이터로 알고리즘의 정확성을 측정한다. 측정 결과 성별에서는 LSTM, 체육 교실은 MLP와 LSTM, 나이는 SVM이 가장 우수한 결과를 보임을 확인하였다.
심전도 신호는 시간 및 환경 변화에 따라 측정되는 시계열 데이터로 매번 등록 데이터와 동일한 크기의 비교 데이터를 취득해야 하는 문제점이 발생한다. 본 논문에서는 신호 크기 부적합 문제를 해결하기 위해 가상 생체신호 생성을 위한 보조 분류기 기반 적대적 생성 신경망(Auxiliary Classifier Generative Adversarial Networks)의 네트워크 모델을 제안한다. 생성된 가상 생체신호의 유사성을 확인하기 위해 코사인 각도와 교차 상관관계를 이용하였다. 실험 결과, 코사인 유사도 측정 결과로 평균 유사도는 0.991의 결과를 나타냈으며, 교차 상관관계를 이용한 유클리디언 거리 기반 유사성 측정 결과는 평균 0.25 유사도 결과를 나타냈다. 이는 등록 데이터와 실험 데이터간의 크기가 일치하지 않더라도 가상 생체신호 생성을 통해 신호 크기 부적합 문제를 해결함을 확인하였다.
Objectives: The present mini review aimed to summarize the existing knowledge regarding the beneficial and adverse effects of raloxifene in menopausal women. Methods: This study is a review of relevant publications about the effects of raloxifene on sleep disorder, depression, venous thromboembolism, the plasma concentration of lipoprotein, breast cancer, and cognitive function among menopausal women. Results: Raloxifene showed no significant effect on depression and sleep disorder. Verbal memory improved with administration of 60 mg/day of raloxifene while a mild cognitive impairment risk reduction by 33% was observed with administration of 120 mg/day of raloxifene. Raloxifene was associated with a 50% decrease in the need for prolapse surgery. The result of a meta-analysis showed a significant decline in the plasma concentration of lipoprotein in the raloxifene group compared to placebo (standardized mean difference, -0.43; 10 trials). A network meta-analysis showed that raloxifene significantly decreased the risk of breast cancer (relative risk, 0.572; 95% confidence interval, 0.327-0.881; P = 0.01). In terms of adverse effects of raloxifene, the odds ratio (OR) was observed to be 1.54 (P = 0.006), indicating 54% increase in the risk of deep vein thrombosis (DVT) while the OR for pulmonary embolism (PE) was 1.05, suggesting a 91% increase in the risk of PE alone (P = 0.03). Conclusions: Raloxifene had no significant effect on depression and sleep disorder but decreased the concentration of lipoprotein. Raloxifene administration was associated with an increased risk of DVT and PE and a decreased risk of breast cancer and pelvic organ prolapse in postmenopausal women.
스마트 홈은 가정의 가전제품, 에너지 소비 장치, 보안기기 등 모든 사물을 통신망으로 연결해 모니터링 및 제어할 수 있는 기술이다. 스마트 홈은 자동제어 뿐 아니라 상황과 사용자의 취향을 학습하고, 이에 맞는 결과를 스스로 제공하는 방향으로 발전하고 있다. 본 논문은 사용자의 행동을 감지하여 사용자의 특성에 맞는 쾌적한 실내 환경 제어 서비스를 할 수 있는 모델을 제안하였다. 전체 시스템 구성은 센서와 와이파이를 탑재한 ESP8266, 실시간 데이터베이스인 firebase, 스마트 폰 어플로 구성된다. 본 모델은 사용자가 가전기기 작동시의 학습모드, 학습 결과를 통한 학습 제어, 실내와 실외 센서의 값을 이용한 자동 환기 등의 기능으로 구분된다. 학습은 에어컨, 가습기, 공기청정지 등 가전기기 제어시의 온도와 습도에 대한 이동 평균을 이용하였다. 본 시스템은 데이터베이스에 지속적으로 수집된 데이터를 다양한 기계학습과 딥 러닝을 통해 사용자의 특성을 분석하고 예측하여 보다 고 품질의 서비스를 제공할 수 있다.
평택항의 원양어선 회사에서 정보현황은 선박 배치도와 철판과 자석 등으로 구성된 수작업에 의한 현황판 보드를 이용하고 있다. 유비쿼터스 네트워크를 기반으로 하는 인터넷 웹 애플리케이션 환경에서 매 시간마다 접수된 항해중인 37척의 원양선박정보를 인터넷에 연결된 PC에서 표시하는 연구를 한다. Flash 기술 기반의 RIA의 활용을 통해 3단 가로 그리드 구성으로 Digital Dash-Board을 구성하여 6대양에 운항중인 선박항해위치 및 위도, 경도 표시는 물론 각종 정보를 visual하게 display한다. 운영자 및 사용자에게 편의성을 높일 수 있고, 실시간 데이터를 활용해서 역동적인 Web Application 구축에 중점을 두었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.