• 제목/요약/키워드: deep network

검색결과 2,983건 처리시간 0.032초

A Deep Learning Model for Predicting User Personality Using Social Media Profile Images

  • Kanchana, T.S.;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.265-271
    • /
    • 2022
  • Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.

백본 네트워크에 따른 사람 속성 검출 모델의 성능 변화 분석 (Analyzing DNN Model Performance Depending on Backbone Network )

  • 박천수
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.128-132
    • /
    • 2023
  • Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.

  • PDF

Learning Less Random to Learn Better in Deep Reinforcement Learning with Noisy Parameters

  • Kim, Chayoung
    • 한국정보기술학회 영문논문지
    • /
    • 제9권1호
    • /
    • pp.127-134
    • /
    • 2019
  • In terms of deep Reinforcement Learning (RL), exploration can be worked stochastically in the action of a state space. On the other hands, exploitation can be done the proportion of well generalization behaviors. The balance of exploration and exploitation is extremely important for better results. The randomly selected action with ε-greedy for exploration has been regarded as a de facto method. There is an alternative method to add noise parameters into a neural network for richer exploration. However, it is not easy to predict or detect over-fitting with the stochastically exploration in the perturbed neural network. Moreover, the well-trained agents in RL do not necessarily prevent or detect over-fitting in the neural network. Therefore, we suggest a novel design of a deep RL by the balance of the exploration with drop-out to reduce over-fitting in the perturbed neural networks.

A Study on the Accuracy Improvement of One-repetition Maximum based on Deep Neural Network for Physical Exercise

  • Lee, Byung-Hoon;Kim, Myeong-Jin;Kim, Kyung-Seok
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.147-154
    • /
    • 2019
  • In this paper, we conducted a study that utilizes deep learning to calculate appropriate physical exercise information when basic human factors such as sex, age, height, and weight of users come in. To apply deep learning, a method was applied to calculate the amount of fat needed to calculate the amount of one repetition maximum by utilizing the structure of the basic Deep Neural Network. By applying Accuracy improvement methods such as Relu, Weight initialization, and Dropout to existing deep learning structures, we have improved Accuracy to derive a lean body weight that is closer to actual results. In addition, the results were derived by applying a formula for calculating the one repetition maximum load on upper and lower body movements for use in actual physical exercise. If studies continue, such as the way they are applied in this paper, they will be able to suggest effective physical exercise options for different conditions as well as conditions for users.

Deep learning classifier for the number of layers in the subsurface structure

  • Kim, Ho-Chan;Kang, Min-Jae
    • International journal of advanced smart convergence
    • /
    • 제10권3호
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, we propose a deep learning classifier for estimating the number of layers in the Earth's structure. When installing a grounding system, knowledge of the subsurface in the area is absolutely necessary. The subsurface structure can be modeled by the earth parameters. Knowing the exact number of layers can significantly reduce the amount of computation to estimate these parameters. The classifier consists of a feedforward neural network. Apparent resistivity curves were used to train the deep learning classifier. The apparent resistivity at 20 equally spaced log points in each curve are used as the features for the input of the deep learning classifier. Apparent resistivity curve data sets are collected either by theoretical calculations or by Wenner's measurement method. Deep learning classifiers are coded by Keras, an open source neural network library written in Python. This model has been shown to converge with close to 100% accuracy.

딥러닝의 모형과 응용사례 (Deep Learning Architectures and Applications)

  • 안성만
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.127-142
    • /
    • 2016
  • 딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.

심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측 (Very short-term rainfall prediction based on radar image learning using deep neural network)

  • 윤성심;박희성;신홍준
    • 한국수자원학회논문집
    • /
    • 제53권12호
    • /
    • pp.1159-1172
    • /
    • 2020
  • 본 연구에서는 강우예측을 위해 U-Net과 SegNet에 기반한 합성곱 신경망 네트워크 구조에 장기간의 국내 기상레이더 자료를 활용하여 심층학습기반의 강우예측을 수행하였다. 또한, 기존 외삽기반의 강우예측 기법인 이류모델의 결과와 비교 평가하였다. 심층신경망의 학습 및 검정을 위해 2010부터 2016년 동안의 기상청 관악산과 광덕산 레이더의 원자료를 수집, 1 km 공간해상도를 갖는 480 × 480의 픽셀의 회색조 영상으로 변환하여 HDF5 형태의 데이터를 구축하였다. 구축된 데이터로 30분 전부터 현재까지 10분 간격의 연속된 레이더 영상 4개를 이용하여 10분 후의 강수량을 예측하도록 심층신경망 모델을 학습하였으며, 학습된 심층신경망 모델로 60분의 선행예측을 수행하기 위해 예측값을 반복 사용하는 재귀적 방식을 적용하였다. 심층신경망 예측모델의 성능 평가를 위해 2017년에 발생한 24개의 호우사례에 대해 선행 60분까지 강우예측을 수행하였다. 임계강우강도 0.1, 1, 5 mm/hr에서 평균절대오차와 임계성공지수를 산정하여 예측성능을 평가한 결과, 강우강도 임계 값 0.1, 1 mm/hr의 경우 MAE는 60분 선행예측까지, CSI는 선행예측 50분까지 참조 예측모델인 이류모델이 보다 우수한 성능을 보였다. 특히, 5 mm/hr 이하의 약한 강우에 대해서는 심층신경망 예측모델이 이류모델보다 대체적으로 좋은 성능을 보였지만, 5 mm/hr의 임계 값에 대한 평가결과 심층신경망 예측모델은 고강도의 뚜렷한 강수 특징을 예측하는 데 한계가 있었다. 심층신경망 예측모델은 예측시간이 길어질수록 공간 평활화되는 경향이 뚜렷해지며, 이로 인해 강우 예측의 정확도가 저하되었다. 이류모델은 뚜렷한 강수 특성을 보존하기 때문에 강한 강도 (>5 mm/hr)에 대해 심층신경망 예측모델을 능가하지만, 강우 위치가 잘못 이동하는 경향이 있다. 본 연구결과는 이후 심층신경망을 이용한 레이더 강우 예측기술의 개발과 개선에 도움이 될 수 있을 것으로 판단된다. 또한, 본 연구에서 구축한 대용량 기상레이더 자료는 향후 후속연구에 활용될 수 있도록 개방형 저장소를 통해 제공될 예정이다.

Generative Adversarial Network를 이용한 손실된 깊이 영상 복원 (Depth Image Restoration Using Generative Adversarial Network)

  • 나준엽;심창훈;박인규
    • 방송공학회논문지
    • /
    • 제23권5호
    • /
    • pp.614-621
    • /
    • 2018
  • 본 논문에서는 generative adversarial network (GAN)을 이용한 비감독 학습을 통해 깊이 카메라로 깊이 영상을 취득할 때 발생한 손실된 부분을 복원하는 기법을 제안한다. 제안하는 기법은 3D morphable model convolutional neural network (3DMM CNN)와 large-scale CelebFaces Attribute (CelebA) 데이터 셋 그리고 FaceWarehouse 데이터 셋을 이용하여 학습용 얼굴 깊이 영상을 생성하고 deep convolutional GAN (DCGAN)의 생성자(generator)와 Wasserstein distance를 손실함수로 적용한 구별자(discriminator)를 미니맥스 게임기법을 통해 학습시킨다. 이후 학습된 생성자와 손실 부분을 복원해주기 위한 새로운 손실함수를 이용하여 또 다른 학습을 통해 최종적으로 깊이 카메라로 취득된 얼굴 깊이 영상의 손실 부분을 복원한다.

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

인공신경망의 연결압축에 대한 연구 (A Study on Compression of Connections in Deep Artificial Neural Networks)

  • 안희준
    • 한국산업정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.17-24
    • /
    • 2017
  • 최근 딥러닝, 즉 거대 또는 깊은 인공신경망을 사용한 기술이 놀라운 성능을 보이고 있고, 점차로 그 네트워크의 규모가 커지고 있다. 하지만, 신경망 크기의 증가는 계산양의 증가로 이어져서 회로의 복잡성, 가격, 발열, 실시간성 제약 등의 문제를 야기한다. 또한, 신경망 연결에는 많은 중복성이 존재한다, 본 연구에서는 이 중복성을 효과적으로 제거하여 이용하여 원 신경망의 성능과 원하는 범위안의 차이를 보이면서, 네트워크 연결의 수를 줄이는 방법을 제안하고 실험하였다. 특히, 재학습에 의하여 성능을 향상시키고, 각 계층별 차이를 고려하기 위하여 계층별 오류율을 할당하여 원하는 성능을 보장할 수 있는 간단한 방법을 제안하였다. 대표적인 영상인식 신경망구조인 FCN (전연결) 구조와 CNN (컨벌루션 신경망) 구조에서 대하여 실험한 결과 약 1/10 정도의 연결만으로도 원 신경망과 유사한 성능을 보일 수 있음을 확인하였다.