Figure 1. Structure of node
Figure 2. Structure of Deep Neural Network
Figure 3. Result of learning to using sigmoid function
Figure 4. Different of sigmoid and relu function
Figure 5. Result of applying HE initialization to Relu function
Figure 6. Overfitting problem
Figure 8. Result of applying Accuracy improvement techniques
Figure 9. Deep learning output and actual value
Figure 7. (a) Before Dropout, (b) After Dropout
Table 1. 1RM calculation formula by type of exercise using lean body mass
Table 2. Percentage of 1RM according to the purpose of exercise
References
- Aarts, Henk, Theo Paulussen, and Herman Schaalma. "Physical exercise habit: on the conceptualization and formation of habitual health behaviours." Health education research 12.3 (1997): 363-374. DOI: https://doi.org/10.1093/her/12.3.363
- Ravì, Daniele, et al. "Deep learning for health informatics." IEEE journal of biomedical and health informatics 21.1 (2017): 4-21. https://doi.org/10.1109/JBHI.2016.2636665
- Doan, Brandon K., et al. "Effects of increased eccentric loading on bench press 1RM." The Journal of Strength & Conditioning Research 16.1 (2002): 9-13. DOI: https://doi.org/10.1519/1533-4287(2002)016<0009:eoielo>2.0.co;2
- Schmidhuber, Jurgen. "Deep learning in neural Networks: An overview." Neural Networks 61 (2015): 85-117. DOI: https://doi.org/10.1016/j.neunet.2014.09.003
- Chassiakos, A. G., and S. F. Masri. "Modelling unknown structural systems through the use of neural networks." Earthquake engineering & structural dynamics 25.2 (1996): 117-128. DOI: https://doi.org/10.1002/(sici)1096-9845(199602)25:2<117::aid-eqe541>3.0.co;2-a
- Han, Jun, and Claudio Moraga. "The influence of the sigmoid function parameters on the speed of backpropagation learning." International Workshop on Artificial Neural Networks. Springer, Berlin, Heidelberg, 1995. DOI:10.1007/3-540-59497-3_175
- Qian, Yao, et al. "On the training aspects of deep neural Network (DNN) for parametric TTS synthesis." 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. DOI: https://doi.org/10.1109/icassp.2014.6854318
- Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).
- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436. DOI: https://doi.org/10.1038/nature14539
- Kumar, Siddharth Krishna. "On weight initialization in deep neural Networks." arXiv preprint arXiv:1704.08863 (2017).
- Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural Networks from overfitting." The Journal of Machine Learning Research 15.1 (2014): 1929-1958.
- Cadore, E., et al. "Prediction of one repetition maximum load by total and lean body mass in trained and untrained men." Medicina Sportiva 16.3 (2012): 111-117. DOI: https://doi.org/10.5604/17342260.1011391