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Abstract 
 

Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential 
network architectures for the future Internet. The advantages of MEC and ICN such as 
computation and storage capabilities at the edge of the network, in-network caching and 
named-data communication paradigm can greatly improve the quality of video streaming 
applications. However, the packet loss in wireless network environments still affects the video 
streaming performance and the existing loss recovery approaches in ICN does not exploit the 
capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism 
(DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the 
Forward Error Correction (FEC) packets are generated at the edge of the network, which 
dramatically reduces the workload of core network and backhaul. By monitoring network 
states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning 
algorithm. Considering the characteristics of video streaming and MEC, in this paper we 
develop content caching detection and fast retransmission algorithm to effectively utilize 
resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively 
adjust and control the FEC request rate and achieve better video quality than the existing 
approaches. 
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1. Introduction 

The emerging video streaming applications (virtual reality, 3D online games, ultra high 
definition TV, smart environment, etc.) pose new challenges to the wireless access networks 
[1-5]. According to Cisco’s report, the mobile video traffic will continuously grow and will 
reach 78% of total mobile data traffic by 2021 [6]. In order to fulfill the new demand, Mobile 
Edge Computing (MEC) [7] and Information-Centric Networking (ICN) [8] are proposed as 
primary network architectures for the future mobile Internet.  

The MEC shifts the cloud computing to the edge of the network. The original cloud 
computing as general IT infrastructure adopts a centralized structure which is comprised by a 
cluster of high performance computing resources. With the network virtualization and 
service-oriented architecture, the cloud computing platform can flexibly provide various types 
of services. However, the rapid development of the mobile devices and the Internet of Things 
(IoT) leads to the further explosion of mobile data traffic. The huge amount of data generated 
by the end hosts greatly increases the workload of the core network and backhaul [9][10]. To 
solve this problem, the MEC decentralizes the original cloud computing resources to the edge 
of the network. Due to the distributed structure, the MEC is able to achieve the computing 
offloading, traffic offloading, and support context-aware localized services [11]. 

The main goal of ICN is to transfer the host-to-host communication scheme used by TCP/IP 
protocols to content centric model [12]. The rationale behind the content centric model is that 
current Internet users mostly concentrate on information consumption, for example, YouTube, 
Instagram and Facebook, and the traditional host-to-host scheme is inefficient for content 
dissemination. In ICN protocols, named content is the core element and the name is the key 
property for packet processing (routing, caching, forwarding, etc.) [8]. In addition, every node 
along the transmission path is able to temporally store the content in its local storage which is 
called in-network caching functionality. As a result, if an intermediate node happens to cache a 
requested content, it can stop forwarding the request and send the content back. The content 
centric model of ICN can efficiently reduce duplicated transmission and improve the network 
utilization [13].  

Despite the advance in mobile and wireless communications, the packet loss in wireless 
network environments still affects the video streaming performance [14-16]. The existing 
approaches mainly adopt Forward Error Correction (FEC) [17-18] methods to overcome 
packet loss. FEC packets are generated at the video server and transmitted through wired and 
wireless links to the video clients. However, a majority of packet losses are arisen from 
wireless link errors, for instance, signal interference, collision, signal fading. As the growth of 
video content, delivering redundant FEC packets causes huge waste of network resources. 
Based on the architectural convergence of MEC and ICN, in this paper we propose a Deep 
Learning based Loss Recovery Mechanism (DL-LRM) for video streaming to overcome 
wireless packet loss. The DL-LRM consists of deep Q-learning based FEC control algorithm 
and content caching detection based retransmission algorithm [19-21]. In difference to 
existing approaches, we utilize the computing functionality provided by the MEC to produce 
FEC packets. Transmission of FEC packets at the edge of the network can dramatically reduce 
the workload of core network and backhaul. In addition, with monitoring wireless link statues, 
the deep Q-learning based FEC control algorithm adjusts the FEC request rate to avoid 
unnecessary transmission. Although the cache capability of the edge cloud reduces the 
transmission latency, the edge cloud cannot store enormous amount of request video content 
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and the ICN protocols isolate the location that content is stored. With considering the 
characteristics of MEC and ICN, we design a content caching detection based retransmission 
algorithm to make the best of MEC resources. The proposed algorithm monitors the outcomes 
of Interest packets and apply likelihood ratio test to detect cache missing. According to the 
detection result, our proposed algorithm adaptively set the retransmission timer for recovering 
lost packets. 

The remainder of this paper is organized as follows: Section 2 describes the background and 
related work of MEC and ICN. Section 3 presents our proposed DL-LRM. Section 4 discusses 
experiment settings and simulation results. Finally, Section 5 describes our future work and 
concludes this paper. 

2. Related Work 
As huge mobile and IoT devices connected to the Internet, the core network and wireless 
backhaul face enormous data transmission pressure [22]. In addition, emerging applications 
such as augmented reality, self-driving cars and e-Health set higher requirements for the 
network infrastructure. The solution suggested by the MEC is to bring cloud computing 
platform to the wireless access network, and offload computing and storage tasks to the edge 
cloud platform [23]. The goal of MEC is to alleviate core network workload, improve network 
performance and user experience by using localized content distribution, computing 
offloading, data offloading and context-aware computing [23]. The MEC has received 
extensive attention from academia and industry. The European Telecommunications 
Standards Institute (ETSI) established a working group in 2014 to promote the standardization 
of MEC. In 2010, Cuervo et al. at Duke University first proposed a computational offloading 
prototype system that enabled the migration of running code to the edge cloud for execution 
[24]. Aiming at the problem of computing resource allocation, Zhao et al. proposed a joint 
optimization algorithm for allocation of computing resources and communication resources 
[25]. By migrating high-complexity and high-energy computing tasks from mobile terminals 
to the edge cloud, the workload and energy consumption of mobile terminals can be greatly 
reduced [24]. Liu et al. applied the stochastic geometry theory to propose a mobility-aware 
cache model for MEC based small cell networks [26]. Rebecchi et al. analyzed the content 
distribution pattern and proposed a delay guaranteed data offloading scheme for cellular 
networks [27]. 

Although the TCP/IP protocols have achieved great success, with the continuous 
advancement of computer and communication technologies, the scope and scale of Internet 
applications have undergone fundamental changes, far beyond the intention of original design. 
The information centric communication model has been proposed to adapt the new changes 
[28]. The major ICN projects include the Data Oriented Network Architecture (DONA) at 
University of California, Berkeley, the Content Centric Networking (CCN) at Xerox Palo Alto 
Research Center, the Publish/Subscribe for Internet Routing Paradigm (PSIRP) at Technical 
University of Helsinki and Named Data Networking (NDN) at the University of California, 
Los Angeles [28]. Jacobson et al. originally proposed the architecture of the information 
centric communication architecture, routing protocols and network security models [29]. 
Using in-network caching functionality, Katsaros et al. designed an overlay based multicast 
transmission scheme [30]. Jacobson et al. developed a prototype of voice communication 
system to verify the feasibility of the ICN architecture for multimedia applications [31]. Bai et 
al. applied the information centric architecture to the vehicular ad-hoc networks and proposed 
various new types of network applications [32]. For the problem of video packet loss in 
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wireless ICN, Han et al. proposed a adaptive FEC algorithm [19]. However, the proposed 
algorithm in [19] used video server to produce FEC packets and did not exploit the advantages 
of the MEC. 

3. Edge-Assistant Loss Recovery Mechanism 

3.1 Video Streaming Scheme for MEC based Information-Centric Network 
According to the MEC network architecture, a video streaming scheme is designed as 
presented in Fig. 1. The video delivery platform consists of three layers and the 
communications between each layer follows ICN protocols. 

 
 

Fig. 1. Video Streaming Scheme for MEC based Information-Centric Network 
 
In application layer, the video server performs raw video compression and packetization. The 
ICN protocols use two types of packets, Interest and Data packets. Since the ICN adopts the 
receiver-driven transmission model, the generated video packets will be stored in the video 
server’s buffer instead of pushing to the video clients. Only when the interest packets are 
received, the video server fetches the matching data packets and delivers to the video clients. 
Due to the in-networking caching functionality of ICN, if any forwarding node along the 
transmission route caches the requested data packet, the forwarding node can directly send it 
back to the video client without further delivering the request to the video server. Therefore, 
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the video server has no need to trace the status of each video streaming session. The video 
streaming applications usually involve a large number of users, and the in-networking caching 
functionality is able to tremendously reduce the transmission pressure of the video server. 

The core network layer includes major communication facilities, such as control and 
management cloud, switches, gateways, routers and high-speed wired links to interconnect the 
wireless access networks. The control and management cloud coordinates each 
communication facilities and provides the functions of authentication, transmission policy 
control, resource management, quality of service provision, and network virtualization. As 
shown in Fig. 1, the access network layer is composed of base stations and mobile nodes. Each 
base station is associated with an edge cloud platform, which is the main architectural 
difference of MEC from the conventional access network. To take full advantage of 
computing and storage resources of MEC, the edge cloud platform in our proposed scheme 
performs FEC encoding, video data cache and FEC transmission control and the mobile node 
is responsible for interest packet scheduling, lost packet recovery and video decoding as 
represented in Fig. 2. 

 

 
Fig. 2. Interest and Data Packets Transmission in MEC based Information-Centric Network 

 
An ICN node has three primary data structures, Content Store (CS), Pending Interest Table 

(PIT) and Forwarding Information Base (FIB). CS is a local storage to support in-network 
caching functionality and FIB is a routing table that guides the transmission of interest packets. 
When sending an Interest packet, the ICN node logs corresponding route information as a PIT 
record. There is a timer associated with each PIT record. If the timer is expired and the data 
packet is not received, the forwarding node just removes the PIT record. The end-host node 
can choose actions (resend the Interest packet, remove the PIT record, send FEC packets, etc.) 
based on the application policies. In ICN protocols, the timer value is denoted as lifetime. The 
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video streaming applications are delay sensitive, therefore the lifetime setting is critical for 
recovering the packet loss. 

3.2 Loss Recovery Model of MEC based Information-Centric Network 
Supported by the MEC server, the base station plays a role of both wireless router and general 
ICN node with high computing and storage resources. In MEC-ICN, the base station 
continuously keeps track of the video transmission. After delivering a group of video packets, 
the MEC server uses the error correction code to generate FEC packets. The video and 
generated FEC packets are stored in the local buffer of the MEC server. In accordance with 
video decoding rate and the number of lost packets, the mobile node sends the requests for 
video and FEC packets. 
        Packet losses over wireless links possess burst property. For example, if there is error 
occurred during transmission of packet with sequence number i. The next packet with 
sequence number i + 1 has high probability to have error again. Therefore, we can use the 
Markov decision process (S, A, P, R, γ) to model loss recovery procedure. Let us define one 
step as round-trip transmissions of requests and responses for one group of video and FEC 
packets. At each step t, the mobile node observes the transmission state st= (Tvideo, TFEC, Rvideo, 
RFEC, D), and S is the state set of all transmission states, where st ∈ S. Tvideo and TFEC are the 
number of interest packets for video and FEC respectively. Similarly, Rvideo and RFEC are 
corresponding to the number of received data packets for video and FEC. D is the number of 
decodable packets for the group.  

The number of Interest packets for FEC that the mobile node chooses to recover lost 
packets is defined as action A = {x∈Z |0 ≤ x ≤ FECmax}. P is the state transition probability 
from current state st to next state s t+1. The immediate reward of the mobile node taking action 
at is 

𝑟𝑡 = �

𝑇𝐹𝐸𝐶 − 𝑅𝐹𝐸𝐶
𝐷

 ,     𝑖𝑓 𝐷 = 𝑇𝑣𝑖𝑑𝑒𝑜 
𝑅𝑣𝑖𝑑𝑒𝑜 − 𝑇𝑣𝑖𝑑𝑒𝑜

𝐷
,   𝑖𝑓 𝐷 < 𝑇𝑣𝑖𝑑𝑒𝑜   

�                                        (1)  

 
The rationale of equation 1 is to measure the effectiveness of FEC packets for loss recovery. If 
the whole group of video packets can be decoded, then the immediate reward is non-negative. 
However, if certain packets cannot be decoded, then the immediate reward is negative. 
Considering effect of action at after n steps, we define the accumulated reward as 

𝑅𝑡 = �𝑟𝑖𝛾𝑖−𝑡
𝑛

𝑖=𝑡

                                                                   (2) 

where γ is a decay factor 0 < γ ≤ 1. 

3.3 Deep Q-Learning based FEC Control Algorithm 
Unlike TCP/IP networks, the mobile nodes, in ICN, need to explicitly send requests for FEC to 
overcome lost packets. Since the transmission of FEC packets occupies extra network 
bandwidth, it is important to adjust the number of requests according to network condition 
variations. Following the video Streaming Scheme of MEC-ICN, we propose a Deep 
Q-Learning based FEC control algorithm to regulate FEC requests. The mobile node works as 
agent, and the MEC-ICN is the environment. Based on the proposed loss recovery model, the 
agent selects an action and observes transmission state at each time step. The action selection 
at a step can be defined as a policy π which is a conditional probability distribution 𝜋(𝑎|𝑠) =
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Pr [𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]. To estimate the value of an action under the policy π, we can use the 
state-action value function [33] 

𝑄𝜋(𝑠,𝑎) = 𝐸𝜋 �� 𝛾𝑘
∞

𝑘=0

𝑟𝑡+𝑘+1|𝐴𝑡 = 𝑎, 𝑆𝑡 = 𝑠�                                 (3)  

According to Bellman equations, the goal of our proposed algorithm is to find the optimal 
state-action value function [33] 

𝑄∗(𝑠,𝑎) = 𝑟𝑠𝑎 + 𝛾 � 𝑝𝑠𝑠′𝑎
𝑠′∈ 𝑆

  𝑚𝑎𝑥𝑎′𝑞∗(𝑠′,𝑎′)                               (4)  

Where 𝑟𝑠𝑎 is immediate reward acquired by the agent taking action a in state s. 𝑝𝑠𝑠′𝑎  is the state 
transition probability from current state s to next state sꞌ by performing action a.  

As agent, the mobile node cannot directly obtain the state transition probability. Therefore, 
the proposed DNQ-FEC control algorithm uses a deep neural network to estimate the optimal 
state-action value function as 𝑄(𝑠𝑡 ,𝑎𝑡;  𝜃)  ≈  𝑄∗(𝑠,𝑎). 𝜃 is the weights of the deep neural 
network. At each step, the mobile node uses ϵ-greedy strategy to choose an action, where a 
random action is selected with probability ϵ and the action having maximum state-action value 
is selected with probability 1- ϵ. After performing the action, the mobile node can obtain the 
immediate reward and the next state sꞌ. To record the status of each step, current state, next 
state, action, and immediate reward are stored in a replay buffer B. A loss function is defined to 
evaluate the deep neural network estimation  

𝐿(𝜃) = �𝑟 + 𝛾max
𝑎

𝑄(𝑠𝑡+1,𝑎;𝜃) −𝑄(𝑆𝑡 ,𝐴𝑡; 𝜃)� 2                           (5) 
The deep neural network is trained to minimize the loss function by using stochastic gradient 
descent optimization 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 �𝑟𝑡+1 + 𝛾max
𝑎

𝑄(𝑆𝑡+1,𝑎;𝜃𝑡) − 𝑄(𝑆𝑡 ,𝐴𝑡;𝜃𝑡)� ∇𝜃𝑡𝑄(𝑆𝑡 ,𝐴𝑡;𝜃𝑡)    (6) 

Where 𝛼 is the learning rate and the training dataset is randomly drawn from the replay buffer 
B. The detail of our proposed DNQ-FEC control algorithm is presented in Algorithm 1. 
 

Algorithm 1 DNQ-FEC Control Algorithm 
1: Initialize the neural network parameters and replay buffer 
2: for t = 1, 2, … do 
3:   generate a random number r ~ uniform(0, 1) 
4:   if r ≤ ϵ then 
5:      action is randomly selected a𝑡  ∈ A  
6:   else 
7:      action at is argmaxaꞌQ(st+1, a; θt) 
8:   end if 
9:   sending Interest packets for video and FEC 
10:  observe immediate reward rt and next state st+1 
11:  store the status list (st, st+1, at, rt) into replay buffer B 
12:  randomly select a dataset from B 
13:  perform stochastic gradient descent on L(θ) 
14: end for 

3.4 Content Caching Detection based Adaptive Retransmission Algorithm 
Due to the delay constraint, existing approaches mainly use FEC to overcome packet loss for 
wireless video streaming. The deployment of edge cloud platform reduces the latency and it 
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enables recovering the lost video packets by retransmission. However, there are huge amount 
of videos, the edge cloud cannot guarantee to cache all requested videos. In addition, the cache 
replacement algorithm can cause video data partially stored at the edge cloud. ICN protocols 
employ receiver driven transmission model, the end-host node needs to fast detect content 
caching at the edge cloud and set the PIT entry timer accordingly. We use TCP Retransmission 
Timeout (RTO) algorithm [34] to calculate the LifeTime as 𝐿𝑖𝑓𝑒𝑇𝑖𝑚𝑒 = 𝜇𝑅𝑇𝑇 + 4𝜎𝑅𝑇𝑇  , 
where 𝜇𝑅𝑇𝑇  is smoothed RTT sample mean and 𝜎𝑅𝑇𝑇 is smoothed RTT sample variation. If 
video segments are cached at the edge cloud, then the LifeTime converges to the transmission 
latency between the edge cloud and end-host node. On the contrary, if certain video segments 
are not cached, it means that the video segments need to be retrieved from farther distance 
nodes than the edge cloud. The converged LifeTime underestimates the transmission latency 
and causes PIT entry timeout.  

To identify the timeout caused by cache missing or packet loss, we separately observe the 
outcomes of video and FEC Interest packets. The FEC packets are only generated at the edge 
cloud, therefore the timeout of the FEC Interest packet is incurred entirely by packet loss. The 
average packet loss rate p can be obtained through random variable Y. In addition, we can 
define two mutually exclusive hypothesis for causes of video Interest packet timeout, where 
H0 is packet loss, and H1 is cache missing. With observation of consecutive video and FEC 
Interest packets, the likelihood ratio under hypothesis H0 is defined 

𝜆(𝐻0) =
�𝑛𝑘�𝑝

𝑘(1− 𝑝)𝑛−𝑘

�𝑚𝑗 �𝑝
𝑗(1− 𝑝)𝑚−𝑗

                                                      (7) 

where n and m are the observation windows for video and FEC Interest packets. k and j are the 
number of timeout for video and FEC respectively. 
  If the video segments are not cached at the edge cloud and the LifeTime is not enough for 
transmission latency, the video Interest packets will continuously suffer timeouts. Therefore, 
the likelihood ratio 𝜆(𝐻0) is decreased. When 𝜆(𝐻0) is less than threshold ω and reset the 
LifeTime. The content caching detection and adaptive retransmission algorithm is further 
explained in Algorithm 2. 
 

Algorithm 2 Content Caching Detection and Adaptive Retransmission Algorithm 
1: if data packet received then 
2:   obtain ith RTT sample 
3:   calculate RTT sample mean as 𝜇𝑖 = (1− 𝛼)𝑢𝑖−1 + 𝛼𝑅𝑇𝑇𝑖 
4:   calculate RTT sample variation as 𝜎𝑖 = (1 − 𝛽)𝜎𝑖−1 + 𝛽(𝑅𝑇𝑇𝑖 − 𝜇𝑖)  
5:   update PIT entry timer as 𝐿𝑖𝑓𝑒𝑇𝑖𝑚𝑒 = 𝜇𝑅𝑇𝑇 + 4𝜎𝑅𝑇𝑇 
6: end if 
7: if Interest packet timeout then 
8:   update observation windows 
9:   calculate 𝜆(𝐻0) according to equation (7) 
10:   if 𝜆(𝐻0) <  𝜔 then 
11:    reject 𝐻0, cache is missing at the edge cloud 
12:    reset LifeTime 
13:  end if 
14: end if 
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4. Experimental Results and Analysis 
To evaluate the efficiency of our DL-LRM mechanism, comparing to the Adaptive Loss 
Protection scheme (ALP-CCN) proposed in [19] we have conducted simulations in the 
Network Simulator 3. The experimental network topology follows the structure shown in Fig. 
2. Transmission path between the video server and the video clients consists of wired and 
wireless links. The base station is associated the edge cloud platform. The edge cloud cache 
the video content and use video data to generate FEC packets. Simulation parameters are 
shown in Table 1. 

Table 1. Simulation Parameters 

Parameter Value 

Video buffer size of edge cloud  6 × 104 entries 
Size of PIT 1 × 103 entries 
Data transmission rate 50 Mbps 
Wireless loss rate 3% ~ 15% 
Cache Policy Least Recently Used 
Number of Video server 1 
Number of Video clients 200 
Video codec H.264/AVC 

 
The experiments are conducted with two stages. The first stage is to train the deep neural 

network which is used in our proposed deep Q-Learning based FEC control algorithm. The 
second stage is to evaluate the performance of the algorithms. Fig. 3 shows the values of the 
loss function during the training. At the beginning of iterations, the value of each action is 
randomly assigned. The agent needs to try different actions and estimate their values. 
Therefore, the variation of the loss function is high. As the agent exploits the action-state space, 
the value of the loss function is gradually decreased and then stabilized. 

 
Fig. 3. Values of the Loss Function in Training Stage 
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As explained in Section 3.2, fast detection of cache missing is crucial to recover packet loss 
by using retransmission approach. Fig. 4 depicts the likelihood ratio testing at different packet 
loss rates. 

 
Fig. 4. Likelihood Ratio Testing under Different Packet Loss Rates 

 

To simulate the cache missing, we intentionally store video data packets from index 1 to 639 
in the edge cloud and remove subsequent video packets. The video data packets stored in the 
edge cloud cause decreasing of the LifeTime. Starting from packet index 640, the video data 
packets are retrieved from further nodes. The decreased LifeTime is less than the required 
RTT, and consecutive video PIT entries will timeout. Whereas the FEC packets are generated 
at the edge cloud, the timeout of FEC PIT entries is only caused by FEC packet loss. As shown 
in Fig. 4, the likelihood ratios are rapidly decreased under different packet loss rates. 

 
Fig. 5. Video Quality Evaluation at 3% Packet Loss Rate 
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   We also conduct experiments to compare our proposed mechanism with ALP-CCN. 
Although ALP-CCN adopts FEC with retransmission for loss recovery, it does not utilize the 
resources of the edge cloud. FEC packets are produced by the video server and transmitted 
through the core network, backhaul, and wireless access network to the video clients. With the 
increasing number of video content and users, the redundant FEC packets consume huge 
portion of the bandwidth. When the packet loss rate is low, the ALP-CCN can recover a 
majority of lost packets, and the achieved video quality is presented in Fig. 5.  

 
Fig. 6. Video Quality Evaluation at 7% Packet Loss Rate 

   
With increasing packet loss rate, the timeout of PIT entries frequently occurs. The proposed 

DL-LRM is able to distinguish packet loss from cache missing and efficiently adjust the 
retransmission timer. The achieved video quality is higher than ALP-CCN as depicted in Fig. 
6 and Fig. 7. 

 
Fig. 7. Video Quality Evaluation at 15% Packet Loss Rate 
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5. Conclusion 
In this paper, we propose an edge-assistant loss recovery mechanism for video streaming over 
mobile edge computing based information-centric networks. The proposed mechanism 
consists of two algorithms which are deep Q-learning based FEC control algorithm and 
content caching detection based adaptive retransmission algorithm. A system model is built to 
describe the dynamic behaviors of video and FEC packet transmission. Based on the system 
mode, we design a deep reinforcement learning algorithm to tune the transmission rate of 
redundant FEC packets. The computing and storage resources provided by the edge cloud 
enable recovery of packet loss through retransmission.  To further utilize the advantages of the 
edge cloud, we propose a fast retransmission algorithm with content caching detection 
capability. For the future work, we plan to apply the proposed mechanism to 
information-centric ad hoc network environment. 
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