• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.029 seconds

Implementation of Face Recognition Pipeline Model using Caffe (Caffe를 이용한 얼굴 인식 파이프라인 모델 구현)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.430-437
    • /
    • 2020
  • The proposed model implements a model that improves the face prediction rate and recognition rate through learning with an artificial neural network using face detection, landmark and face recognition algorithms. After landmarking in the face images of a specific person, the proposed model use the previously learned Caffe model to extract face detection and embedding vector 128D. The learning is learned by building machine learning algorithms such as support vector machine (SVM) and deep neural network (DNN). Face recognition is tested with a face image different from the learned figure using the learned model. As a result of the experiment, the result of learning with DNN rather than SVM showed better prediction rate and recognition rate. However, when the hidden layer of DNN is increased, the prediction rate increases but the recognition rate decreases. This is judged as overfitting caused by a small number of objects to be recognized. As a result of learning by adding a clear face image to the proposed model, it is confirmed that the result of high prediction rate and recognition rate can be obtained. This research will be able to obtain better recognition and prediction rates through effective deep learning establishment by utilizing more face image data.

LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction (시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례)

  • Lee, Hyun-Sang;Oh, Sehwan
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.

Fake SNS Account Identification Technique Using Statistical and Image Data (통계 및 이미지 데이터를 활용한 가짜 SNS 계정 식별 기술)

  • Yoo, Seungyeon;Shin, Yeongseo;Bang, Chaewoon;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.58-66
    • /
    • 2022
  • As Internet technology develops, SNS users are increasing. As SNS becomes popular, SNS-type crimes using the influence and anonymity of social networks are increasing day by day. In this paper, we propose a fake account classification method that applies machine learning and deep learning to statistical and image data for fake accounts classification. SNS account data used for training was collected by itself, and the collected data is based on statistical data and image data. In the case of statistical data, machine learning and multi-layer perceptron were employed to train. Furthermore in the case of image data, a convolutional neural network (CNN) was utilized. Accordingly, it was confirmed that the overall performance of account classification was significantly meaningful.

Deep Learning based Scrapbox Accumulated Status Measuring

  • Seo, Ye-In;Jeong, Eui-Han;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.27-32
    • /
    • 2020
  • In this paper, we propose an algorithm to measure the accumulated status of scrap boxes where metal scraps are accumulated. The accumulated status measuring is defined as a multi-class classification problem, and the method with deep learning classify the accumulated status using only the scrap box image. The learning was conducted by the Transfer Learning method, and the deep learning model was NASNet-A. In order to improve the accuracy of the model, we combined the Random Forest classifier with the trained NASNet-A and improved the model through post-processing. Testing with 4,195 data collected in the field showed 55% accuracy when only NASNet-A was applied, and the proposed method, NASNet with Random Forest, improved the accuracy by 88%.

A Study on the Detection Method of Lane Based on Deep Learning for Autonomous Driving (자율주행을 위한 딥러닝 기반의 차선 검출 방법에 관한 연구)

  • Park, Seung-Jun;Han, Sang-Yong;Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.979-987
    • /
    • 2020
  • This study used the Deep Learning models used in previous studies, we selected the basic model. The selected model was selected as ZFNet among ZFNet, Googlenet and ResNet, and the object was detected using a ZFNet based FRCNN. In order to reduce the detection error rate of FRCNN, location of four types of objects detected inside the image was designed by SVM classifier and location-based filtering was applied. As simulation results, it showed similar performance to the lane marking classification method with conventional 경계 detection, with an average accuracy of about 88.8%. In addition, studies using the Linear-parabolic Model showed a processing speed of 165.65ms with a minimum resolution of 600 × 800, but in this study, the resolution was treated at about 33ms with an input resolution image of 1280 × 960, so it was possible to classify lane marking at a faster rate than the previous study by CNN-based End to End method.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

Adaptive Recommendation System for Tourism by Personality Type Using Deep Learning

  • Jeong, Chi-Seo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • Adaptive recommendation systems have been developed with big data processing as a system that provides services tailored to users based on user information and usage patterns. Deep learning can be used in these adaptive recommendation systems to handle big data, providing more efficient user-friendly recommendation services. In this paper, we propose a system that uses deep learning to categorize and recommend tourism types to suit the user's personality. The system was divided into three layers according to its core role to increase efficiency and facilitate maintenance. Each layer consists of the Service Provisioning Layer that real users encounter, the Recommendation Service Layer, which provides recommended services based on user information entered, and the Adaptive Definition Layer, which learns the types of tourism suitable for personality types. The proposed system is highly scalable because it provides services using deep learning, and the adaptive recommendation system connects the user's personality type and tourism type to deliver the data to the user in a flexible manner.

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

Prediction of Static and Dynamic Behavior of Truss Structures Using Deep Learning (딥러닝을 이용한 트러스 구조물의 정적 및 동적 거동 예측)

  • Sim, Eun-A;Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.69-80
    • /
    • 2018
  • In this study, an algorithm applying deep learning to the truss structures was proposed. Deep learning is a method of raising the accuracy of machine learning by creating a neural networks in a computer. Neural networks consist of input layers, hidden layers and output layers. Numerous studies have focused on the introduction of neural networks and performed under limited examples and conditions, but this study focused on two- and three-dimensional truss structures to prove the effectiveness of algorithms. and the training phase was divided into training model based on the dataset size and epochs. At these case, a specific data value was selected and the error rate was shown by comparing the actual data value with the predicted value, and the error rate decreases as the data set and the number of hidden layers increases. In consequence, it showed that it is possible to predict the result quickly and accurately without using a numerical analysis program when applying the deep learning technique to the field of structural analysis.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.