DOI QR코드

DOI QR Code

Implementation of Face Recognition Pipeline Model using Caffe

Caffe를 이용한 얼굴 인식 파이프라인 모델 구현

  • 박진환 (가천대학교 에너지 IT학과) ;
  • 김창복 (가천대학교 에너지 IT학과)
  • Received : 2020.09.14
  • Accepted : 2020.10.26
  • Published : 2020.10.30

Abstract

The proposed model implements a model that improves the face prediction rate and recognition rate through learning with an artificial neural network using face detection, landmark and face recognition algorithms. After landmarking in the face images of a specific person, the proposed model use the previously learned Caffe model to extract face detection and embedding vector 128D. The learning is learned by building machine learning algorithms such as support vector machine (SVM) and deep neural network (DNN). Face recognition is tested with a face image different from the learned figure using the learned model. As a result of the experiment, the result of learning with DNN rather than SVM showed better prediction rate and recognition rate. However, when the hidden layer of DNN is increased, the prediction rate increases but the recognition rate decreases. This is judged as overfitting caused by a small number of objects to be recognized. As a result of learning by adding a clear face image to the proposed model, it is confirmed that the result of high prediction rate and recognition rate can be obtained. This research will be able to obtain better recognition and prediction rates through effective deep learning establishment by utilizing more face image data.

제안 모델은 얼굴 검출과 랜드마크 및 얼굴 인식 알고리즘을 이용하여 인공신경망으로 학습을 통해 얼굴 예측률과 인식률을 향상하는 모델을 구현하였다. 제안 모델은 특정 인물의 얼굴 영상에서 랜드마킹을 한 후, 기존에 학습된 Caffe 모델을 이용하여 얼굴검출과 임베딩 벡터 128D를 추출하였다. 학습은 기계학습 알고리즘인 SVM (support vector machine)과 DNN (deep neural network)을 구축하여 학습하였다. 얼굴인식은 학습된 모델을 이용하여 학습된 인물 중 다른 얼굴 영상으로 테스트하였다. 실험 결과, SVM 보다는 DNN으로 학습한 결과가 우수한 예측률과 인식률을 보였다. DNN의 중간층을 증가하게 되면 예측률은 높아지나 인식률이 감소하는 현상이 발생하였다. 이것은 인식하고자 하는 대상이 적음으로써 발생하는 과적합으로 판단된다. 제안 모델은 명확한 얼굴 영상을 추가하여 학습한 결과, 높은 예측률과 인식률의 결과를 얻을 수 있음을 확인할 수 있었다. 본 연구는 좀 더 많은 얼굴 영상 데이터를 이용함으로써 보다 효과적인 딥러닝 구축을 통해 보다 향상된 인식률과 예측률을 얻을 수 있을 것이다.

Keywords

References

  1. L. Yann, Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol. 521, No. 7553, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
  2. V. Paul, and M. Jones, "Rapid object detection using a boosted cascade of simple features," in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai: Hi, Vol. 1, pp. 511-58, 2001.
  3. S. S. Farface, M. Saberian, and L. J. Li, "Multi-view face detection using deep convolutional neural networks," in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Seattle: WA, pp.643-650, 2015.
  4. H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, "A convolutional neural network cascade for face detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston: MA, pp. 5325-5334, 2015.
  5. R. Joseph and A. Farhadi, "Yolo9000: better, faster, stronger," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu: HI, pp. 7263-7271, 2017.
  6. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: towards real-time object detection with region proposal networks," Advances in Neural Information Processing Systems, Montreal: Canada, pp. 91-99, 2015.
  7. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, "Joint face detection and alignment using multitask cascaded convolutional networks," IEEE Signal Processing Letters, Vol. 23, pp. 10, 1499-1503, 2016. https://doi.org/10.1109/LSP.2016.2603342
  8. Y. Sun, X. Wang, and X. Tang, "Deep convolutional network cascade for facial point detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland : OR, pp. 3476-3483, 2013.
  9. J. Zhang, S. Shan, M. Kan, and X. Chen, "Coarse-to-fine Auto-encoder networks (CFAN) for real-time face alignment," European Conference on Computer Vision, Zurich: Switzerland, pp.1-16, 2014.
  10. Y. Taigman, M. Yang, M. Ranzato, L. Wolf, "Deepface: closing the gap to human-level performance in face verification," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus : Ohio, pp. 1701-1708, 2014.
  11. Y. Sun, X. Wang, X. Tang, "Deep learning face representation from predicting 10,000 classes," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus: Ohio, pp. 1891-1898, 2014.
  12. Y. Sun, X. Wang, X. Tang, "Deep learning face representation by joint identification-verification," Advances in Neural Information Processing Systems, Montreal: Canada, pp. 1988-1996, 2014.
  13. E. A. Zanaty, S. H. Aljahdali, and R. J. Cripps, "Accurate support vector machines for data classification," International Journal of Rapid Manufacturing, Vol. 1, No. 2, pp. 114-127, 2009. https://doi.org/10.1504/IJRAPIDM.2009.030047
  14. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: convolutional architecture for fast feature embedding," in Proceedings of the 22nd ACM International Conference on Multimedia, Orlando: Florida, pp. 675-678, 2014.