• Title/Summary/Keyword: deep learning models

Search Result 1,392, Processing Time 0.025 seconds

Accuracy Assessment of Land-Use Land-Cover Classification Using Semantic Segmentation-Based Deep Learning Model and RapidEye Imagery (RapidEye 위성영상과 Semantic Segmentation 기반 딥러닝 모델을 이용한 토지피복분류의 정확도 평가)

  • Woodam Sim;Jong Su Yim;Jung-Soo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.269-282
    • /
    • 2023
  • The purpose of this study was to construct land cover maps using a deep learning model and to select the optimal deep learning model for land cover classification by adjusting the dataset such as input image size and Stride application. Two types of deep learning models, the U-net model and the DeeplabV3+ model with an Encoder-Decoder network, were utilized. Also, the combination of the two deep learning models, which is an Ensemble model, was used in this study. The dataset utilized RapidEye satellite images as input images and the label images used Raster images based on the six categories of the land use of Intergovernmental Panel on Climate Change as true value. This study focused on the problem of the quality improvement of the dataset to enhance the accuracy of deep learning model and constructed twelve land cover maps using the combination of three deep learning models (U-net, DeeplabV3+, and Ensemble), two input image sizes (64 × 64 pixel and 256 × 256 pixel), and two Stride application rates (50% and 100%). The evaluation of the accuracy of the label images and the deep learning-based land cover maps showed that the U-net and DeeplabV3+ models had high accuracy, with overall accuracy values of approximately 87.9% and 89.8%, and kappa coefficients of over 72%. In addition, applying the Ensemble and Stride to the deep learning models resulted in a maximum increase of approximately 3% in accuracy and an improvement in the issue of boundary inconsistency, which is a problem associated with Semantic Segmentation based deep learning models.

Sentiment Analysis to Evaluate Different Deep Learning Approaches

  • Sheikh Muhammad Saqib ;Tariq Naeem
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.83-92
    • /
    • 2023
  • The majority of product users rely on the reviews that are posted on the appropriate website. Both users and the product's manufacturer could benefit from these reviews. Daily, thousands of reviews are submitted; how is it possible to read them all? Sentiment analysis has become a critical field of research as posting reviews become more and more common. Machine learning techniques that are supervised, unsupervised, and semi-supervised have worked very hard to harvest this data. The complicated and technological area of feature engineering falls within machine learning. Using deep learning, this tedious process may be completed automatically. Numerous studies have been conducted on deep learning models like LSTM, CNN, RNN, and GRU. Each model has employed a certain type of data, such as CNN for pictures and LSTM for language translation, etc. According to experimental results utilizing a publicly accessible dataset with reviews for all of the models, both positive and negative, and CNN, the best model for the dataset was identified in comparison to the other models, with an accuracy rate of 81%.

Road Image Recognition Technology based on Deep Learning Using TIDL NPU in SoC Enviroment (SoC 환경에서 TIDL NPU를 활용한 딥러닝 기반 도로 영상 인식 기술)

  • Yunseon Shin;Juhyun Seo;Minyoung Lee;Injung Kim
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.25-31
    • /
    • 2022
  • Deep learning-based image processing is essential for autonomous vehicles. To process road images in real-time in a System-on-Chip (SoC) environment, we need to execute deep learning models on a NPU (Neural Procesing Units) specialized for deep learning operations. In this study, we imported seven open-source image processing deep learning models, that were developed on GPU servers, to Texas Instrument Deep Learning (TIDL) NPU environment. We confirmed that the models imported in this study operate normally in the SoC virtual environment through performance evaluation and visualization. This paper introduces the problems that occurred during the migration process due to the limitations of NPU environment and how to solve them, and thereby, presents a reference case worth referring to for developers and researchers who want to port deep learning models to SoC environments.

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

  • Chaehyeon Kim;Ki Yong Lee
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.345-359
    • /
    • 2024
  • A regression model represents the relationship between explanatory and response variables. In real life, explanatory variables often affect a response variable with a certain time lag, rather than immediately. For example, the marriage rate affects the birth rate with a time lag of 1 to 2 years. Although deep learning models have been successfully used to model various relationships, most of them do not consider the time lags between explanatory and response variables. Therefore, in this paper, we propose an extension of deep learning models, which automatically finds the time lags between explanatory and response variables. The proposed method finds out which of the past values of the explanatory variables minimize the error of the model, and uses the found values to determine the time lag between each explanatory variable and response variables. After determining the time lags between explanatory and response variables, the proposed method trains the deep learning model again by reflecting these time lags. Through various experiments applying the proposed method to a few deep learning models, we confirm that the proposed method can find a more accurate model whose error is reduced by more than 60% compared to the original model.

Deep Learning-Based Inverse Design for Engineering Systems: A Study on Supervised and Unsupervised Learning Models

  • Seong-Sin Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.127-135
    • /
    • 2024
  • Recent studies have shown that inverse design using deep learning has the potential to rapidly generate the optimal design that satisfies the target performance without the need for iterative optimization processes. Unlike traditional methods, deep learning allows the network to rapidly generate a large number of solution candidates for the same objective after a single training, and enables the generation of diverse designs tailored to the objectives of inverse design. These inverse design techniques are expected to significantly enhance the efficiency and innovation of design processes in various fields such as aerospace, biology, medical, and engineering. We analyzes inverse design models that are mainly utilized in the nano and chemical fields, and proposes inverse design models based on supervised and unsupervised learning that can be applied to the engineering system. It is expected to present the possibility of effectively applying inverse design methodologies to the design optimization problem in the field of engineering according to each specific objective.

Deep learning neural networks to decide whether to operate the 174K Liquefied Natural Gas Carrier's Gas Combustion Unit

  • Sungrok Kim;Qianfeng Lin;Jooyoung Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.383-384
    • /
    • 2022
  • Gas Combustion Unit (GCU) onboard liquefied natural gas carriers handles boil-off to stabilize tank pressure. There are many factors for LNG cargo operators to take into consideration to determine whether to use GCU or not. Gas consumption of main engine and re-liquefied gas through the Partial Re-Liquefaction System (PRS) are good examples of these factors. Human gas operators have decided the operation so far. In this paper, some deep learning neural network models were developed to provide human gas operators with a decision support system. The models consider various factors specially into GCU operation. A deep learning model with Sigmoid activation functions in input layer and hidden layers made the best performance among eight different deep learning models.

  • PDF

Trends in quantum reinforcement learning: State-of-thearts and the road ahead

  • Soohyun Park;Joongheon Kim
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.748-758
    • /
    • 2024
  • This paper presents the basic quantum reinforcement learning theory and its applications to various engineering problems. With the advances in quantum computing and deep learning technologies, various research works have focused on quantum deep learning and quantum machine learning. In this paper, quantum neural network (QNN)-based reinforcement learning (RL) models are discussed and introduced. Moreover, the pros of the QNN-based RL algorithms and models, such as fast training, high scalability, and efficient learning parameter utilization, are presented along with various research results. In addition, one of the well-known multi-agent extensions of QNN-based RL models, the quantum centralized-critic and multiple-actor network, is also discussed and its applications to multi-agent cooperation and coordination are introduced. Finally, the applications and future research directions are introduced and discussed in terms of federated learning, split learning, autonomous control, and quantum deep learning software testing.

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.

Predicting bond strength of corroded reinforcement by deep learning

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.145-159
    • /
    • 2022
  • In this study, the extreme learning machine and deep learning models were devised to estimate the bond strength of corroded reinforcement in concrete. The six inputs and one output were used in this study. The compressive strength, concrete cover, bond length, steel type, diameter of steel bar, and corrosion level were selected as the input variables. The results of bond strength were used as the output variable. Moreover, the Analysis of variance (Anova) was used to find the effect of input variables on the bond strength of corroded reinforcement in concrete. The prediction results were compared to the experimental results and each other. The extreme learning machine and the deep learning models estimated the bond strength by 99.81% and 99.99% accuracy, respectively. This study found that the deep learning model can be estimated the bond strength of corroded reinforcement with higher accuracy than the extreme learning machine model. The Anova results found that the corrosion level was found to be the input variable that most affects the bond strength of corroded reinforcement in concrete.

Application of transfer learning for streamflow prediction by using attention-based Informer algorithm

  • Fatemeh Ghobadi;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.165-165
    • /
    • 2023
  • Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.

  • PDF