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Abstract  

 

Recent studies have shown that inverse design using deep learning has the potential to rapidly generate 

the optimal design that satisfies the target performance without the need for iterative optimization processes. 

Unlike traditional methods, deep learning allows the network to rapidly generate a large number of solution 

candidates for the same objective after a single training, and enables the generation of diverse designs 

tailored to the objectives of inverse design. These inverse design techniques are expected to significantly 

enhance the efficiency and innovation of design processes in various fields such as aerospace, biology, 

medical, and engineering. We analyzes inverse design models that are mainly utilized in the nano and 

chemical fields, and proposes inverse design models based on supervised and unsupervised learning that can 

be applied to the engineering system. It is expected to present the possibility of effectively applying inverse 

design methodologies to the design optimization problem in the field of engineering according to each 

specific objective. 
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1. Introduction 

Inverse design is a methodology that sets a desired result or target performance in advance and finds an 

optimized design that satisfies these criteria [1]. Conventional methodologies have been focused on 

optimizing performance to generate output data that matches the targeted results derived from the given input 

data [2]. However, in actual engineering design optimization problems, there are often cases where it is 

necessary to instantly determine the optimal design that corresponds to a specific constraint in reverse. This 

process requires iterative experimentation, which can be time-consuming and costly. To address this issue, 

recent studies have increasingly utilized data-driven deep learning (DL) approaches. DL has been widely 

used in nanophotonics, synthesis paths of organic compounds, optimization of solar power generation, and a 

variety of other solid materials [3, 4]. This paper analyzes the main features and research cases of inverse 

design based on supervised and unsupervised learning, and proposes inverse design models applicable in the 

field of engineering. 
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2. Related works 

The purpose of design optimization is to design a system with maximum performance while satisfying a 

given constrain. Traditional design optimization methods can be described through methods such as Genetic 

algorithms(GA) [5] and the gradient-based Sequential quadratic programming (SQP) [6]. GA and SQP often 

require iterative optimization processes in high-dimensional design spaces, leading to high computational 

costs. In contrast, DL can efficiently find complex structures and patterns within large datasets, reducing 

computational costs and time in the inverse design process. DL-based inverse design can be divided into 

supervised and unsupervised learning; supervised learning is defined as finding complex nonlinear 

relationships between pairs of pre-labeled data [7]. Unsupervised learning, dealing with unlabeled data, 

involves discovering significant patterns within the data without answers, posing challenges in learning. 

However, it excels in generating new patterns in entirely new data. 

Recent studies on inverse design using supervised learning models include research that compared known 

label values for specific optical properties and those using deep neural networks to design complex photonic 

structures with large datasets of electromagnetic scattering instances required [3, 8]. A method has been 

proposed that instantly generates optimal designs satisfying multiple objectives, such as APT and drag torque, 

in automotive brake systems through multidisciplinary inverse design with DL [9]. As for research in inverse 

design using unsupervised learning models, examples include studies that defined structure-property 

relationships through Generative Adversarial Network (GAN) to generate optical spectrum in meta-surfaces 

[10]. A model based on GAN has been proposed to generate new hypothetical materials with desired 

properties [11]. Additionally, conditional GAN(CGAN) have been used in inverse design techniques to 

generate structural designs of meta-atom and meta-molecule [12]. Regression and conditionally generative 

adversarial neural network (RCGAN) have been used to implement the generation of materials with specific 

target bandwidth values, specifically for graphene and boron-nitrogen hybrids [13]. A variational auto-

encoder (VAE) has been utilized to output meta-materials and their spectra corresponding to targeted optical 

responses [14]. VAE was used for layout design, and unsupervised learning was primarily used to discover 

new structures for various engineering problems [15]. The intrinsic relationships between microstructures 

and electromagnetic responses were effectively discovered using conditional VAE (CVAE) [16]. CVAE and 

GAN were combined to generate airframe shapes corresponding to target wall Mach number distributions 

that match specified features such as suction peak position, shock, and rear load [17]. 

 

3. Methods 

3.1 Inverse design via supervised learning 

Supervised training learns the mapping relationship input (x) to output data (𝑦) to find complex and 

nonlinear relationships between two sets of pre-labeled data.  A supervised learning model f: x → 𝑦 is 

trained to approximate a function that uses given design variables (x) to predict engineering performance (𝑦). 

However, the inverse mapping f: 𝑦 → x may not always be successful due to the presence of many potential 

design candidates (x). To resolve this, Liu et al. (2018) first trained a forward DL model (Figure 1(a)) [3]. 

After training the forward model, the weights of the forward neural network (FNN) are fixed, and the 

network undergoes retraining. The network is optimized to receive inputs that yield the closest results.  

3.1.1.  Proposed inverse design model via supervised learning 

Figure 1(b) shows the architecture of an inverse design network through supervised learning, which 
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applies a target value to a binary wheel according to the network proposed in [10]. This network combines a 

pre-trained FNN fFNN(x →𝑦′) and a subsequently trained inverse network fINN(𝑦 →x). After training a 

forward DL model with good prediction performance, the weights of fFNN are fixed, and the network is 

retrained. As a result, the x of fINN is passed to the frozen forward network fFNN, which outputs 𝑦′, and 

fINN is trained to minimize the loss between 𝑦 and 𝑦′. Thus, fINN can obtain the optimal design x for 𝑦. 

FINN that generates the design parameters that satisfy the target performance is attached in front of the 

fFNN and retrained, after learning the fFNN that predicts the performance of the wheel design parameters.  

 

 

 

                                                                          

 

 

 

 

 

 

Figure 1. Architectures of inverse design via supervised learning  

 

 When the training is completed, fINN can generate optimized design parameters as output by inputting the 

target performance. The parameters of the fFNN model were optimized to minimize the mean square error 

(MSE) shown in Equation (1).  

                                                                                                                                                                        (1) 

 

  In Equation (1),   𝑦 and 𝑦 ̂ are the ground truth and the estimation by a model, respectively. MSE is 

commonly used to evaluate the performance of a regression model, with lower values indicating a more 

accurate model prediction.  

Table 1 outlines a process for generating wheel designs using supervised learning. The method starts with a 

training dataset and iteratively adjusts the design parameters using gradient descent to minimize the mean 

squared error (MSE) between the predicted and actual data, until the error is within an acceptable range. The 

process utilizes two functions, fFNN and fINN, where fINN generates the final design parameters based on 

the optimized input. 

 

Table 1. Iterative optimization process with supervised learning  

Algorithm : Generating for wheel design via supervised learning 

1.  Training data set { xn, 𝑦n | n = 1,…, N},       MSE(𝑦, fFNN (x))  

2.  repeat: 

3.     if  e > δ then (δ: best error, e = MSE(𝑦, fINN(x))) 

             𝑥′ initialization for gradient descent 

           Define error: E = MSE(𝑦, fFNN(𝑥′)) 

(a) Structure of  tandem 

network 

(b) Inverse design architecture model for wheel  
images via supervised learning 
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           Gradient descent 𝑥′(i+1)= 𝑥′i - η∇E(𝑥′i)  

4.    end if   

5.  until e <= δ 

6. fINN(𝑦) →  𝑥′new 

* fFNN : FNN function, fINN : INN function 

 

3.2   Inverse design via unsupervised learning 

Unsupervised learning is a machine learning technique that learns patterns and characteristics from 

unlabeled data. It is commonly used for tasks such as clustering or dimensionality reduction, and is also used 

for generative modeling. The most representative unsupervised deep inverse design models are GAN [18] 

and VAE [19], which generate new data by learning the characteristics and distribution of the data. The goal 

of unsupervised inverse design is to learn the relationship between design variables and engineering 

performance by incorporating conditions. These unsupervised inverse design models can generate many 

unique design candidates based on conditional inputs of target performance. 

 

3.2.1.  Generative Adversarial Network (GAN) 

GAN uses an adversarial training approach, consisting of two networks, a generator and a discriminator 

that compete in a zero-sum game and learn simultaneously. The generator takes random noise and produces 

an image that needs the characteristics of the desired object, while the discriminator determines if the 

generated image comes from the data we want. Many variants of GAN have been developed for different 

purposes, most notably CGAN. The objective function of CGAN is as follows (Equation (2))[20]. 

        

(2) 

 

CGAN includes additional conditional information as an input to G. It typically generates data that is 

trained using a modified objective function, which includes an added condition 𝑦 , to achieve a target 

performance. 

Figure 2(a) shows an example of generating an optical spectrum from a meta-surface [10]. The generator 

makes an image of a structure that satisfies the optical properties of the transmission spectrum from the 

spectrum T and random noise z and provides a binarized image. The critic classifies the geometric data and 

the generator with images of real structures. The simulator is a pre-trained network that approximates the 

transmission spectrum T for a given pattern in the input, and the provided structure images are validated by 

the simulator's optical property predictions. 

 

3.2.2. Variational Auto-Encoder (VAE) 

Unlike a GAN, which generates an image from random noise, the structure of a VAE  receives an image 

of a structure as input through an encoder. It creates a latent variable z through encoding that compresses 

the input data into low dimensions. It also reconstructs the original data by probabilistically extracting and 

decoding z from the latent space. Conditional Variational Autoencoder CVAE is a variant of VAE that 

learns constraints and uses VAE's generation function to generate design candidates that automatically 

satisfy all constraints. Here is the objective function of a CVAE (Equation (3))[19]. 
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(3) 
 

The 𝐷𝐾𝐿 term computes the Kullback-Leibler divergence between the encoder's distribution  

𝑞𝜙(𝑧∣x(𝑖)) of the latent variable 𝑧 given the input data x(𝑖) and the prior distribution 𝑝𝜃(𝑧), measuring how 

close the encoder distribution is to the prior. The 𝐸𝑞𝜙(𝑧∣x(𝑖)) term calculates the expected log likelihood of 

the reconstructed data x(𝑖), evaluating how well the model reconstructs the data. Optimizing these terms 

allows the VAE to effectively encode and reconstruct the input data. 

Figure 2(b) shows a network structure that generate optimal metamaterials through the relationship 

between physical structure and optical response [14]. It consists of a recognition model that encodes the 

metamaterial into latent space, a prediction model that predicts the reflection spectrum forward for the 

metamaterial, and a generation model that generates new metamaterials that satisfy the desired optical 

properties by applying various latent variable values. 

 

 

 

                                                                 

 

  

 

 

Figure 2.  Inverse design architectures via unsupervised learning  

 

3.2.3. Proposed inverse design model via unsupervised learning 

This paper proposes a model for generating wheel images using CGAN and CVAE, which are variations 

of GAN and VAE. The wheel image shape to be trained is represented as a binary black and white image of 

128 x128 pixels. Figure 3(a) shows CGAN to generate wheel images that satisfy constraints such as desired 

stiffness and mass. The constructor consists of one fully connected layer and four deconvolution layers, 

while the discriminator consists of five convolutional layers followed by a fully connected layer. The output 

layer of the constructor uses the Sigmoid function as the activation function, while all other batch 

normalization layers use LeakyReLU as the activation function. The CGAN model is trained to minimize 

both the constructor loss and the discriminator loss. The generated wheel images are validated with 

additional FNN that predict stiffness and mass, among other things. Since the constructor was trained using 

known unsupervised learning, it shows the potential to design wheel images with a high degree of design 

freedom for a wide range of stiffnesses and mass. A CGAN model trained with topology-optimized wheel 

images can generate many new designs that do not exist in the training dataset.  

(a) Inverse design generating 
for an optical spectrum  

(b) Architecture of the deep generative 
model for metamaterial designs 
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(a) CGAN model for wheel designs 

 

Figure 3(b) shows a schematic diagram of CVAE that add additional conditions to the wheel image 

generation process.  CVAE receives input data along with wheel performance conditions, such as stiffness 

and mass, which are integrated into both the encoder and decoder. The model restores the data from the 

latent variable z, guided by the constraints c. This shows that there are many different wheel images that can 

represent constraints. In this model, the latent variables are selected probabilistically to reconstruct the 

image, which allows different values of the latent variables to be applied to generate new wheel geometries 

that satisfy  the desired target conditions. 

  

 

             (b) CVAE model for wheel designs 

Figure 3.  Proposed architecture of inverse design for wheel images using unsupervised learning  

 

Table 2 and 3 show the training process of CGAN and CVAE models. Table 2 describes a process for 

generating wheel designs using a CGAN. The algorithm trains a generator (G) to create fake wheel designs 



Deep Learning‑Based Inverse Design for Engineering Systems: A Study on Supervised and Unsupervised Learning Models       133 

 

based on noise inputs and target performance or conditions, while a discriminator (D) learns to differentiate 

between the generated and real designs. Training continues until the desired accuracy is achieved through an 

early stopping criterion, after which the generator produces new wheel designs optimized to meet the 

specified conditions. 

 

Table 2. Iterative optimization process with unsupervised learning (CGAN) 

Algorithm : Generating for wheel design via CGAN  

1. Training data set { xn, 𝑐n | n = 1,…, N},     𝑐n : Target performance or condition 

2. repeat: 

3.     G: xfake = G(z, 𝑐), D(xfake, 𝑐) ≈ 1,       G : Generator 

4.     D: D(x, 𝑐) ≈ 1,   D(xfake, 𝑐)≈ 0,          D : Discriminator 

LG  = −logD(G(z, 𝑐), 𝑐) 
LD  = −logD(x, 𝑐)−log(1−D(G(z, 𝑐), 𝑐)) 

5.  until  n_epoch (Early Stopping) 

6.  G(z, 𝑐) → xnew  

 

Table 3 and the described algorithm illustrate an iterative optimization process for wheel design using a 

CVAE. This unsupervised learning method involves encoding the input data and conditions into a latent 

space, and then reconstructing it to minimize reconstruction loss and the Kullback-Leibler divergence, 

adjusting the balance between these losses with a hyperparameter (β). The process continues until a specified 

number of epochs is reached through early stopping, ultimately generating optimized wheel designs. 

 

Table 3. Iterative optimization process with unsupervised learning (CVAE) 

Algorithm : Generating for wheel design via CVAE  

1. Training data set { xn, 𝑐n | n = 1,…, N},    𝑐n : Target performance or condition  

2. repeat: 

3.   z = E(x, 𝑐),                           E  : Encoder 

4.   xrecon = D(z, 𝑐),                        D : Decoder 

5.   Lrecon = ∥x−D(E(xrecon, 𝑐), 𝑐)∥2 

LKL = DKL(E(x, 𝑐), 𝑐)||𝑁(0,I) 

L = Lrecon +  βLKL ,            β: Hyperparameters to balance the two losses 

6. until  n_epoch (Early Stopping) 

7. D(z, 𝑐) → xnew 
 

 

4. Conclusion 

In conclusion, we propose a new approach to engineering problems by introducing the concept of inverse 

design. DL-based inverse design is possible with two approaches: supervised and unsupervised learning, and 

the appropriate method must be selected according to the nature and purpose of the design problem. 

Supervised inverse design approaches learn complex patterns and perform well but they are characterized by 

generating one optimal design at a time. On the other hand, inverse design with unsupervised learning can 

infer and generate new patterns from new data and can generate many different designs simultaneously. 

However, unsupervised learning can be difficult to train for the optimization of high-dimensional and 
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complex problems. If these challenges are overcome, it would be a design method capable of generating 

many different optimal design candidates. In future work, we plan to extend the application of supervised 

and unsupervised inverse design techniques to various domains in real-world engineering. 

In summary, the proposed inverse design model with supervised and unsupervised learning is expected to 

provide efficient design optimization solutions and useful guidelines for applying inverse design 

methodologies to real-world optimization problems in engineering system.  
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