• 제목/요약/키워드: deep learning models

Search Result 1,393, Processing Time 0.028 seconds

Image Captioning with Synergy-Gated Attention and Recurrent Fusion LSTM

  • Yang, You;Chen, Lizhi;Pan, Longyue;Hu, Juntao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3390-3405
    • /
    • 2022
  • Long Short-Term Memory (LSTM) combined with attention mechanism is extensively used to generate semantic sentences of images in image captioning models. However, features of salient regions and spatial information are not utilized sufficiently in most related works. Meanwhile, the LSTM also suffers from the problem of underutilized information in a single time step. In the paper, two innovative approaches are proposed to solve these problems. First, the Synergy-Gated Attention (SGA) method is proposed, which can process the spatial features and the salient region features of given images simultaneously. SGA establishes a gated mechanism through the global features to guide the interaction of information between these two features. Then, the Recurrent Fusion LSTM (RF-LSTM) mechanism is proposed, which can predict the next hidden vectors in one time step and improve linguistic coherence by fusing future information. Experimental results on the benchmark dataset of MSCOCO show that compared with the state-of-the-art methods, the proposed method can improve the performance of image captioning model, and achieve competitive performance on multiple evaluation indicators.

Sentiment Analysis on Global Events under Pandemic of COVID-19

  • Junjun, Zhang;Noh, Giseop
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.272-280
    • /
    • 2022
  • During last few years, pandemic of COVID-19 has been a global issue. Under the COVID-19, global events have been restricted or canceled to secure public hygiene and safety. Since one of the largest global events is Olympic Games, we selected recent Olympic Games as our case of analysis. Tokyo Olympic Games (TOG) was held in 2021, but it encountered a millennium disaster, the pandemic of COVID-19. In such a special period, it is of great significance to explore the emotional tendency of global views before and TOG via artificial intelligence. This paper vastly collects the TOG comment data of mainstream websites in South Korea, China, and the United States by implementing crawler program for sentiment analysis (SA). And we use a variety of sentiment analysis models to compare the accuracy of the experimental results, to obtain more reliable SA results. In addition, in the prediction results, to reduce the distortion of opinion by a minority, we introduce an algorithm called "Removing Biased Minority Opinions (RBMO)" and provide how to apply this method to the interpretation domain. Through our method, more authoritative SA results were obtained, which in turn provided a basis for predicting the sentiment tendency of countries around the world in TOG during the COVID-19 epidemic.

Weibo Disaster Rumor Recognition Method Based on Adversarial Training and Stacked Structure

  • Diao, Lei;Tang, Zhan;Guo, Xuchao;Bai, Zhao;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3211-3229
    • /
    • 2022
  • To solve the problems existing in the process of Weibo disaster rumor recognition, such as lack of corpus, poor text standardization, difficult to learn semantic information, and simple semantic features of disaster rumor text, this paper takes Sina Weibo as the data source, constructs a dataset for Weibo disaster rumor recognition, and proposes a deep learning model BERT_AT_Stacked LSTM for Weibo disaster rumor recognition. First, add adversarial disturbance to the embedding vector of each word to generate adversarial samples to enhance the features of rumor text, and carry out adversarial training to solve the problem that the text features of disaster rumors are relatively single. Second, the BERT part obtains the word-level semantic information of each Weibo text and generates a hidden vector containing sentence-level feature information. Finally, the hidden complex semantic information of poorly-regulated Weibo texts is learned using a Stacked Long Short-Term Memory (Stacked LSTM) structure. The experimental results show that, compared with other comparative models, the model in this paper has more advantages in recognizing disaster rumors on Weibo, with an F1_Socre of 97.48%, and has been tested on an open general domain dataset, with an F1_Score of 94.59%, indicating that the model has better generalization.

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.

A Study of Lightening SRGAN Using Knowledge Distillation (지식증류 기법을 사용한 SRGAN 경량화 연구)

  • Lee, Yeojin;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1598-1605
    • /
    • 2021
  • Recently, convolutional neural networks (CNNs) have been widely used with excellent performance in various computer vision fields, including super-resolution (SR). However, CNN is computationally intensive and requires a lot of memory, making it difficult to apply to limited hardware resources such as mobile or Internet of Things devices. To solve these limitations, network lightening studies have been actively conducted to reduce the depth or size of pre-trained deep CNN models while maintaining their performance as much as possible. This paper aims to lighten the SR CNN model, SRGAN, using the knowledge distillation among network lightening technologies; thus, it proposes four techniques with different methods of transferring the knowledge of the teacher network to the student network and presents experiments to compare and analyze the performance of each technique. In our experimental results, it was confirmed through quantitative and qualitative evaluation indicators that student networks with knowledge transfer performed better than those without knowledge transfer, and among the four knowledge transfer techniques, the technique of conducting adversarial learning after transferring knowledge from the teacher generator to the student generator showed the best performance.

A Study on the Optimization of Convolution Operation Speed through FFT Algorithm (FFT 적용을 통한 Convolution 연산속도 향상에 관한 연구)

  • Lim, Su-Chang;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1552-1559
    • /
    • 2021
  • Convolution neural networks (CNNs) show notable performance in image processing and are used as representative core models. CNNs extract and learn features from large amounts of train dataset. In general, it has a structure in which a convolution layer and a fully connected layer are stacked. The core of CNN is the convolution layer. The size of the kernel used for feature extraction and the number that affect the depth of the feature map determine the amount of weight parameters of the CNN that can be learned. These parameters are the main causes of increasing the computational complexity and memory usage of the entire neural network. The most computationally expensive components in CNNs are fully connected and spatial convolution computations. In this paper, we propose a Fourier Convolution Neural Network that performs the operation of the convolution layer in the Fourier domain. We work on modifying and improving the amount of computation by applying the fast fourier transform method. Using the MNIST dataset, the performance was similar to that of the general CNN in terms of accuracy. In terms of operation speed, 7.2% faster operation speed was achieved. An average of 19% faster speed was achieved in experiments using 1024x1024 images and various sizes of kernels.

Deep Learning Based Rumor Detection for Arabic Micro-Text

  • Alharbi, Shada;Alyoubi, Khaled;Alotaibi, Fahd
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.73-80
    • /
    • 2021
  • Nowadays microblogs have become the most popular platforms to obtain and spread information. Twitter is one of the most used platforms to share everyday life event. However, rumors and misinformation on Arabic social media platforms has become pervasive which can create inestimable harm to society. Therefore, it is imperative to tackle and study this issue to distinguish the verified information from the unverified ones. There is an increasing interest in rumor detection on microblogs recently, however, it is mostly applied on English language while the work on Arabic language is still ongoing research topic and need more efforts. In this paper, we propose a combined Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to detect rumors on Twitter dataset. Various experiments were conducted to choose the best hyper-parameters tuning to achieve the best results. Moreover, different neural network models are used to evaluate performance and compare results. Experiments show that the CNN-LSTM model achieved the best accuracy 0.95 and an F1-score of 0.94 which outperform the state-of-the-art methods.

One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images

  • Li, Zhihang;Huang, Mengqi;Ji, Pengxuan;Zhu, Huamei;Zhang, Qianbing
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.153-166
    • /
    • 2022
  • Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.

Attention-based CNN-BiGRU for Bengali Music Emotion Classification

  • Subhasish Ghosh;Omar Faruk Riad
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2023
  • For Bengali music emotion classification, deep learning models, particularly CNN and RNN are frequently used. But previous researches had the flaws of low accuracy and overfitting problem. In this research, attention-based Conv1D and BiGRU model is designed for music emotion classification and comparative experimentation shows that the proposed model is classifying emotions more accurate. We have proposed a Conv1D and Bi-GRU with the attention-based model for emotion classification of our Bengali music dataset. The model integrates attention-based. Wav preprocessing makes use of MFCCs. To reduce the dimensionality of the feature space, contextual features were extracted from two Conv1D layers. In order to solve the overfitting problems, dropouts are utilized. Two bidirectional GRUs networks are used to update previous and future emotion representation of the output from the Conv1D layers. Two BiGRU layers are conntected to an attention mechanism to give various MFCC feature vectors more attention. Moreover, the attention mechanism has increased the accuracy of the proposed classification model. The vector is finally classified into four emotion classes: Angry, Happy, Relax, Sad; using a dense, fully connected layer with softmax activation. The proposed Conv1D+BiGRU+Attention model is efficient at classifying emotions in the Bengali music dataset than baseline methods. For our Bengali music dataset, the performance of our proposed model is 95%.

Related-key Neural Distinguisher on Block Ciphers SPECK-32/64, HIGHT and GOST

  • Erzhena Tcydenova;Byoungjin Seok;Changhoon Lee
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.72-84
    • /
    • 2023
  • With the rise of the Internet of Things, the security of such lightweight computing environments has become a hot topic. Lightweight block ciphers that can provide efficient performance and security by having a relatively simpler structure and smaller key and block sizes are drawing attention. Due to these characteristics, they can become a target for new attack techniques. One of the new cryptanalytic attacks that have been attracting interest is Neural cryptanalysis, which is a cryptanalytic technique based on neural networks. It showed interesting results with better results than the conventional cryptanalysis method without a great amount of time and cryptographic knowledge. The first work that showed good results was carried out by Aron Gohr in CRYPTO'19, the attack was conducted on the lightweight block cipher SPECK-/32/64 and showed better results than conventional differential cryptanalysis. In this paper, we first apply the Differential Neural Distinguisher proposed by Aron Gohr to the block ciphers HIGHT and GOST to test the applicability of the attack to ciphers with different structures. The performance of the Differential Neural Distinguisher is then analyzed by replacing the neural network attack model with five different models (Multi-Layer Perceptron, AlexNet, ResNext, SE-ResNet, SE-ResNext). We then propose a Related-key Neural Distinguisher and apply it to the SPECK-/32/64, HIGHT, and GOST block ciphers. The proposed Related-key Neural Distinguisher was constructed using the relationship between keys, and this made it possible to distinguish more rounds than the differential distinguisher.

  • PDF