• Title/Summary/Keyword: deep learning models

Search Result 1,393, Processing Time 0.037 seconds

Comparison of Student Churning Prediction Models based on Deep Learning Algorithms (딥러닝 알고리즘에 기반한 퇴원 학생 예측모델 비교)

  • Ko, Young-Sang;Lim, Heui-Seok
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.833-835
    • /
    • 2019
  • 교육열이 강한 우리나라에서는 사교육은 언제나 뜨거운 감자이다. 교육대상 연령층의 인구수가 1990 년부터 빠르게 감소하기 시작했으며, 2005 년을 전후로 초등학생 수의 감소가 더욱 빨라지고 있다. 통계청 데이터에 따르면 2016 년 출생아 수는 40 만 6 천여명에서 2017 년은 35 만 7 천여명으로 향후에도 지속적으로 줄어들 추세이다. 이렇듯 매년 학생수가 감소함에도 불구하고 2018 년 사교육비 총액은 19 조 5 천억수준으로 2017 년 18 조 7 천억보다 8 천억원이 늘어 났다. 학생수는 전년보다 2.5% 줄었지만 사교육비는 반대로 4.4% 늘어났다. 이렇듯 사교육 시장이 심화 되게 되면 경쟁은 더욱 치열해 질 수 밖에 없으며 이 경쟁에서 살아 남기 위해서는 다양한 비즈니스 전략이 필요하며 특히 학생들의 이탈을 줄이는 것은 사업의 가장 중요한 포인트라고 볼 수 있을 것이다. 학원에서의 학생이 퇴원을 하는 이유에 대한 영향도를 분석하고 그 영향도 분석을 통해 학원 학생들의 퇴원 방지에 활용하고자 한다. 본 논문의 주요 연구 내용은 사교육을 대표하는 국내 사설 학원에서의 성적, 출결사항 및 학원 상담 내역 등의 다양한 학원 데이터들을 최적의 딥러닝 알고리즘 분석을 통한 퇴원 학생을 사전 예측하기 위한 논문임을 밝힌다.

Survey on Deep Learning-based Panoptic Segmentation Methods (딥 러닝 기반의 팬옵틱 분할 기법 분석)

  • Kwon, Jung Eun;Cho, Sung In
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

Stage-GAN with Semantic Maps for Large-scale Image Super-resolution

  • Wei, Zhensong;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3942-3961
    • /
    • 2019
  • Recently, the models of deep super-resolution networks can successfully learn the non-linear mapping from the low-resolution inputs to high-resolution outputs. However, for large scaling factors, this approach has difficulties in learning the relation of low-resolution to high-resolution images, which lead to the poor restoration. In this paper, we propose Stage Generative Adversarial Networks (Stage-GAN) with semantic maps for image super-resolution (SR) in large scaling factors. We decompose the task of image super-resolution into a novel semantic map based reconstruction and refinement process. In the initial stage, the semantic maps based on the given low-resolution images can be generated by Stage-0 GAN. In the next stage, the generated semantic maps from Stage-0 and corresponding low-resolution images can be used to yield high-resolution images by Stage-1 GAN. In order to remove the reconstruction artifacts and blurs for high-resolution images, Stage-2 GAN based post-processing module is proposed in the last stage, which can reconstruct high-resolution images with photo-realistic details. Extensive experiments and comparisons with other SR methods demonstrate that our proposed method can restore photo-realistic images with visual improvements. For scale factor ${\times}8$, our method performs favorably against other methods in terms of gradients similarity.

Implementation of Cough Detection System Using IoT Sensor in Respirator

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.132-138
    • /
    • 2020
  • Worldwide, the number of corona virus disease 2019 (COVID-19) confirmed cases is rapidly increasing. Although vaccines and treatments for COVID-19 are being developed, the disease is unlikely to disappear completely. By attaching a smart sensor to the respirator worn by medical staff, Internet of Things (IoT) technology and artificial intelligence (AI) technology can be used to automatically detect the medical staff's infection symptoms. In the case of medical staff showing symptoms of the disease, appropriate medical treatment can be provided to protect the staff from the greater risk. In this study, we design and develop a system that detects cough, a typical symptom of respiratory infectious diseases, by applying IoT technology and artificial technology to respiratory protection. Because the cough sound is distorted within the respirator, it is difficult to guarantee accuracy in the AI model learned from the general cough sound. Therefore, coughing and non-coughing sounds were recorded using a sensor attached to a respirator, and AI models were trained and performance evaluated with this data. Mel-spectrogram conversion method was used to efficiently classify sound data, and the developed cough recognition system had a sensitivity of 95.12% and a specificity of 100%, and an overall accuracy of 97.94%.

Trends and Future of Digital Personal Assistant (디지털 개인비서 동향과 미래)

  • Kwon, O.W.;Lee, K.Y.;Lee, Y.H.;Roh, Y.H.;Cho, M.S.;Huang, J.X.;Lim, S.J.;Choi, S.K.;Kim, Y.K.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, we introduce trends in and the future of digital personal assistants. Recently, digital personal assistants have begun to handle many tasks like humans by communicating with users in human language on smart devices such as smart phones, smart speakers, and smart cars. Their capabilities range from simple voice commands and chitchat to complex tasks such as device control, reservation, ordering, and scheduling. The digital personal assistants of the future will certainly speak like a person, have a person-like personality, see, hear, and analyze situations like a person, and become more human. Dialogue processing technology that makes them more human-like has developed into an end-to-end learning model based on deep neural networks in recent years. In addition, language models pre-trained from a large corpus make dialogue processing more natural and better understood. Advances in artificial intelligence such as dialogue processing technology will enable digital personal assistants to serve with more familiar and better performance in various areas.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

Real-world multimodal lifelog dataset for human behavior study

  • Chung, Seungeun;Jeong, Chi Yoon;Lim, Jeong Mook;Lim, Jiyoun;Noh, Kyoung Ju;Kim, Gague;Jeong, Hyuntae
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.426-437
    • /
    • 2022
  • To understand the multilateral characteristics of human behavior and physiological markers related to physical, emotional, and environmental states, extensive lifelog data collection in a real-world environment is essential. Here, we propose a data collection method using multimodal mobile sensing and present a long-term dataset from 22 subjects and 616 days of experimental sessions. The dataset contains over 10 000 hours of data, including physiological, data such as photoplethysmography, electrodermal activity, and skin temperature in addition to the multivariate behavioral data. Furthermore, it consists of 10 372 user labels with emotional states and 590 days of sleep quality data. To demonstrate feasibility, human activity recognition was applied on the sensor data using a convolutional neural network-based deep learning model with 92.78% recognition accuracy. From the activity recognition result, we extracted the daily behavior pattern and discovered five representative models by applying spectral clustering. This demonstrates that the dataset contributed toward understanding human behavior using multimodal data accumulated throughout daily lives under natural conditions.

Face inpainting via Learnable Structure Knowledge of Fusion Network

  • Yang, You;Liu, Sixun;Xing, Bin;Li, Kesen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.877-893
    • /
    • 2022
  • With the development of deep learning, face inpainting has been significantly enhanced in the past few years. Although image inpainting framework integrated with generative adversarial network or attention mechanism enhanced the semantic understanding among facial components, the issues of reconstruction on corrupted regions are still worthy to explore, such as blurred edge structure, excessive smoothness, unreasonable semantic understanding and visual artifacts, etc. To address these issues, we propose a Learnable Structure Knowledge of Fusion Network (LSK-FNet), which learns a prior knowledge by edge generation network for image inpainting. The architecture involves two steps: Firstly, structure information obtained by edge generation network is used as the prior knowledge for face inpainting network. Secondly, both the generated prior knowledge and the incomplete image are fed into the face inpainting network together to get the fusion information. To improve the accuracy of inpainting, both of gated convolution and region normalization are applied in our proposed model. We evaluate our LSK-FNet qualitatively and quantitatively on the CelebA-HQ dataset. The experimental results demonstrate that the edge structure and details of facial images can be improved by using LSK-FNet. Our model surpasses the compared models on L1, PSNR and SSIM metrics. When the masked region is less than 20%, L1 loss reduce by more than 4.3%.

Scalogram and Switchable Normalization CNN(SN-CNN) Based Bearing Falut Detection (Scalogram과 Switchable 정규화 기반 합성곱 신경망을 활용한 베이링 결함 탐지)

  • Delgermaa, Myagmar;Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.319-328
    • /
    • 2022
  • Bearing plays an important role in the operation of most machinery, Therefore, when a defect occurs in the bearing, a fatal defect throughout the machine is generated. In this reason, bearing defects should be detected early. In this paper, we describe a method using Convolutional Neural Networks (SN-CNNs) based on continuous wavelet transformations and Switchable normalization for bearing defect detection models. The accuracy of the model was measured using the Case Western Reserve University (CWRU) bearing dataset. In addition, batch normalization methods and spectrogram images are used to compare model performance. The proposed model achieved over 99% testing accuracy in CWRU dataset.