DOI QR코드

DOI QR Code

Scalogram과 Switchable 정규화 기반 합성곱 신경망을 활용한 베이링 결함 탐지

Scalogram and Switchable Normalization CNN(SN-CNN) Based Bearing Falut Detection

  • Delgermaa, Myagmar (Dept. of Information and Communication Engineering, Changwon National University) ;
  • Kim, Yun-Su (Dept. of Information and Communication Engineering, Changwon National University) ;
  • Seok, Jong-Won (Dept. of Information and Communication Engineering, Changwon National University)
  • 투고 : 2022.06.10
  • 심사 : 2022.06.28
  • 발행 : 2022.06.30

초록

베어링은 기계가 작동할때 중요한 역할을 한다. 때문에, 베어링에 결함이 발생하면 기계전체의 치명적인 결함을 발생시킨다. 그러므로 베어링 결함은 조기에 발견되어야한다. 본 논문에서는 연속 웨이블릿 변환과 Switchable 정규화를 기반으로 한 합성곱 신경망(SN-CNN)을 이용한 방법을 베어링 결함 감지 모델에 대해 설명한다. 모델의 정확도는 Case Western Reserve University(CWRU) 베어링 데이터 집합을 사용하여 측정되었다. 또한 배치 정규화(BN, Batch Normalization)[1] 방법과 스펙트로그램 이미지가 모델 성능의 비교를 위해 사용되었다.

Bearing plays an important role in the operation of most machinery, Therefore, when a defect occurs in the bearing, a fatal defect throughout the machine is generated. In this reason, bearing defects should be detected early. In this paper, we describe a method using Convolutional Neural Networks (SN-CNNs) based on continuous wavelet transformations and Switchable normalization for bearing defect detection models. The accuracy of the model was measured using the Case Western Reserve University (CWRU) bearing dataset. In addition, batch normalization methods and spectrogram images are used to compare model performance. The proposed model achieved over 99% testing accuracy in CWRU dataset.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2022R1I1A306349311)

참고문헌

  1. Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift," ICML, 2015.
  2. D. Neupane and J. Seok, "Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review," IEEE Access, vol.8, pp.93155-93178, 2020. DOI: 10.1109/ACCESS.2020.2990528
  3. D. Neupane and J. Seok, "'Deep learning-based bearing fault detection using 2-D illustration of time sequence," in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), pp.562-566, 2020. DOI: 10.1109/ICTC49870.2020.9289232
  4. Case Western Reserve University Bearing Data Center. Accessed: 22, 2019. [Online]. Available: https://csegroups.case.edu/bearingdatacenter/home
  5. C. Sun, Z. Zhang, Z. He, Z. Shen, and B. Chen, "Manifold learning-based subspace distance for machinery damage assessment," Mech. Syst. Signal Process., vol.70-71, pp.637-649, 2016. DOI: 10.1016/j.ymssp.2015.09.032
  6. A. Boudiaf, A. Moussaoui, A. Dahane, and I. Atoui, "A comparative study of various methods of bearing faults diagnosis using the case western reserve university data," J. Failure Anal. Prevention, vol.16, no.2, pp.271-284, 2016. DOI: 10.1007/s11668-016-0080-7
  7. M. S. Safizadeh and S. K. Latifi, "Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell," Inf. Fusion, vol.18, no.1, pp.1-8, 2014. DOI: 10.1016/j.inffus.2013.10.002
  8. L. Yuan, D. Lian, X. Kang, Y. Chen, and K. Zhai, "Rolling bearing fault diagnosis based on convolutional neural network and support vector machine," IEEE Access, vol.8, pp.137395-137406, 2020. DOI: 10.1109/ACCESS.2020.3012053
  9. V. K. Rai and A. R. Mohanty, "Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform," Mech. Syst. Signal Process., vol.21, no.6, pp.2607-2615, 2007. DOI: 10.1016/j.ymssp.2006.12.004
  10. Z. Peng, F. Chu, and Y. He, "Vibration signal analysis and feature extraction based on reassigned wavelet scalogram," J. Sound Vib., vol.253, no.5, pp.1087-1100, 2002. DOI: 10.1006/jsvi.2001.4085
  11. M.-Y. Chow, P. M. Mangum, and S. O. Yee, "A neural network approach to real-time condition monitoring of induction motors," IEEE Trans. Ind. Electron., vol.38, no.6, pp.448-453, 1991. DOI: 10.1109/41.107100
  12. Y. S. Wang, Q. H. Ma, Q. Zhu, X. T. Liu, and L. H. Zhao, "An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine," Appl. Acoust., vol.75, no.1, pp.1-9, 2014. DOI: 10.1016/j.apacoust.2013.07.001
  13. A. Malhi and R. X. Gao, "PCA-based feature selection scheme for machine defect classification," IEEE Trans. Instrum. Meas., vol.53, no.6, pp.1517-1525, 2004. DOI: 10.1109/TIM.2004.834070
  14. D. H. Pandya, S. H. Upadhyay, and S. P. Harsha, "Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN," Expert Syst. Appl., vol.40, no.10, pp.4137-4145, 2013. DOI: 10.1016/j.eswa.2013.01.033s
  15. Z. Chen, J. Cen, and J. Xiong, "Rolling bearing fault diagnosis using timefrequency analysis and deep transfer convolutional neural network," IEEE Access, vol.8, pp.150248-150261, 2020. https://doi.org/10.1109/access.2020.3016888
  16. D. Neupane and J. Seok, "A review on deep learning-based approaches for automatic sonar target recognition," Electronics, vol.9, no.11, pp. 1972, 2020. DOI: 10.3390/electronics9111972
  17. J. Sun, C. Yan, and J. Wen, "Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning," IEEE Trans. Instrum. Meas., vol.67, no.1, pp.185-195, 2018. DOI: 10.1109/TIM.2017.2759418
  18. C. Li, W. Zhang, G. Peng, and S. Liu, "Bearing fault diagnosis using fully-connected winner-take-all autoencoder," IEEE Access, vol.6, pp.6103-6115, 2018. DOI: 10.1109/ACCESS.2017.2717492
  19. W. Jiang, C. Cheng, B. Zhou, G. Ma, and Y. Yuan, "A novel GANbased fault diagnosis approach for imbalanced industrial time series," 2019, arXiv:1904.00575. Accessed: 7, 2020. [Online]. Available: http://arxiv.org/abs/1904.00575
  20. D. Zhao, F. Liu, and H. Meng, "Bearing fault diagnosis based on the switchable normalization SSGAN with 1-D representation of vibration signals as input," Sensors, vol.19, no.19, pp.2000, 2019. https://doi.org/10.3390/s19092000
  21. R. Wang, H. Jiang, X. Li, and S. Liu, "A reinforcement neural architecture search method for rolling bearing fault diagnosis," Measurement, vol.154, Art. no.107417, 2019.
  22. L. Eren, "Bearing fault detection by one-dimensional convolutional neural networks," Math. Problems Eng., vol.2017, pp.1-9, 2017. DOI: 10.1155/2017/8617315
  23. D. K. Soother, I. H. Kalwar, T. Hussain, B. S. Chowdhry, S. M. Ujjan, and T. D. Memon, "A novel method based on UNET for bearing fault diagnosis," Comput., Mater. Continua, vol.69, no.1, pp.393-408, 2021. DOI: 10.32604/cmc.2021.014941
  24. X. Guo, L. Chen, and C. Shen, "Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis," Meas. J. Int. Meas. Confederation, vol.93, pp.490-502, 2016. DOI: 10.1016/j.measurement.2016.07.054
  25. P. M. Bentley and J. T. E. McDonnell, "Wavelet transforms: An introduction," Electron. Commun. Eng. J., vol.6, no.4, pp.175-186, 1994. DOI: 10.1049/ecej_19940401
  26. L. Saribulut, A. Teke, M. B. Latran, and M. Tumay, "Fundamentals and literature review of wavelet transform in power quality issues," J. Electr. Electron. Eng. Res., vol.5, no.1, pp.1-8, 2013. DOI: 10.5897/JEEER2013.0435
  27. D. Komorowski and S. Pietraszek, "The use of continuous wavelet transform based on the fast Fourier transform in the analysis of multichannel electrogastrography recordings," J. Med. Syst., vol.40, no.1, pp.1-15, 2016. DOI: 10.1007/s10916-015-0358-4
  28. Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization," NeurIPS workshop, 2016.
  29. V. Dumoulin, J. Shlens, and M. Kudlur. "A learned representation for artistic style," ICLR, 2017.
  30. Wu, Yuxin, and Kaiming He. "Group normalization," ECCV, 2018.
  31. P. Luo, R. Zhang, J. Ren, Z. Peng, and J. Li, "Switchable normalization for learning-to-normalize deep representation," IEEE Trans. Pattern Anal. vol.43, no.2, pp.712-728, 2021. DOI: 10.48550/arXiv.1806.10779
  32. P. Luo, J. Ren, Z. Peng, R. Zhang, and J. Li, "Differentiable learning-tonormalize via switchable normalization," in Proc. 7th Int. Conf. Learn. Represent. (ICLR), pp.1-19, 2019.
  33. W. A. Smith and R. B. Randall, "Rolling element bearing diagnostics using the case western reserve university data: A benchmark study," Mech. Syst. Signal Process., vols.64-65, pp.100-131, 2015. DOI: 10.1016/j.ymssp.2015.04.021
  34. W. Huang, J. Cheng, and Y. Yang, "Rolling bearing fault diagnosis and performance degradation assessment under variable operation conditions based on nuisance attribute projection," Mech. Syst. Signal Process., vol.114, pp.165-188, 2019. DOI: 10.1016/j.ymssp.2018.05.015
  35. X. Li, W. Zhang, and Q. Ding, "A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning," Neurocomputing, vol.310, pp.77-95, 2018. DOI: 10.1016/j.neucom.2018.05.021
  36. He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," ICCV, 2015.
  37. Kingma, Diederik P., and Jimmy Ba. "Adam: A Method for Stochastic Optimization," ICLR, 2015.